The Synchronic and Diachronic Syntax
of the English Verb-Particle Combination
The Synchronic and Diachronic Syntax
of the English Verb-Particle Combination

Een wetenschappelijke proeve op het gebied van de Letteren

Proefschrift

ter verkringing van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. C.W.P.M. Blom,
volgens besluit van het College van Decanen
in het openbaar te verdedigen op maandag 8 januari 2007
om 13.30 uur precies

door

Maatje Barbara Elenbaas

geboren op 11 juli 1978
te Middelburg.
Acknowledgements

I gratefully acknowledge the Netherlands Organisation for Scientific Research (NWO) for funding this four-year research project (project no. 360–70–050).

I would like to express my deepest gratitude to Ans van Kemenade, my promotor and supervisor, for generously providing me with her vast expertise in (English historical) linguistics and for her guidance and encouragement throughout the years. I greatly appreciate the openness of our meetings, whether in the Erasmusgebouw over a pot of tea or in Utrecht over a bottle of wine.

I would also like to thank Geert Booij, my copromotor, for insightful discussions during the meetings of our VU–Nijmegen research group. He was very kind to offer me a guest account at the Vrije Universiteit (VU) Amsterdam, for which thanks are also due to the Faculty of Arts at the VU. I would also like to thank Geert for reading my manuscript in a short space of time and for his helpful comments.

I am grateful to the members of my reading committee, Theresa Biberauer, Bettelou Los, Pieter Muysken, Susan Pintzuk and Fred Weerman for reading my manuscript. I especially want to thank them for their willingness to read it in the summer months.

Thanks also to fellow project member Bettelou Los for sharing her extensive knowledge of English historical linguistics and for her many useful suggestions, including detailed comments on my manuscript. I very much appreciated her constant enthusiasm and enjoyed our conversations about linguistic as well as non-linguistic topics.

A special thank you to Corrien Blom, my fellow AiO in our research group. Our many enjoyable discussions and conversations, on all kinds of topics, were a constant source of motivation.

Many colleagues at the Radboud University Nijmegen deserve thanks. Thanks first of all to my office mates over the years: Aoju Chen, Rini van Dijk, Joanne van Emmerik, Nynke de Haas, Astrid van Hoek and Detlef Wagenaar for chats, tea, biscuits and moral support whenever needed. I thank Griet Coupé, Anne Ribbert and Michel Verhagen for many chats and laughs. Thanks also to Monique van der Haagen, whose door was always open and whose hospitality I have thankfully enjoyed on several occasions. I want to thank Renske van Enschoot for many enjoyable chats over a cup of tea or hot chocolate in the Refter. I would like to thank Janneke de Jong for the many conversations and laughs, for reassuring discussions about academic insecurities, for crash space and for being my paranimf. There are many other colleagues whom I would like to thank for their company and for creating a pleasant work environment.

Several linguists have contributed to this work in one way or another. I am indebted to Theresa Biberauer and Ian Roberts for their valuable input into my theoretical analysis in its early formulation, and to Colin Ewen, Martina Noteboom and Wim van der Wurff for showing interest in and supporting my academic career.

I would also like to express my appreciation to my colleagues in the Department of Linguistics and English Language at the University of Manchester for an inspirational and friendly work environment. I especially want to thank David Denison and Richard Hogg for their academic support and Alison Cort, Bethwyn Evans, Martina Faller, Kristine
Hildebrandt, Jeannette Sakel, Phillip Wallage and Nuria Yañez-Bouza for conversations about linguistic and other topics, coffee/tea breaks and pub visits.

My Manchester housemates deserve thanks for providing a pleasant and sociable home environment and for dragging me away from my manuscript now and then.

A big thank you to mum and dad for their constant unconditional love and support. Thanks also to my brothers Peter and Arjan for being there. I am very happy that Arjan was willing to design the cover illustration. I would also like to thank Kees and Ria Uding for their continuing interest and support. A warm thanks to my friends for providing much-needed timely distraction from particles. A special thank you goes to Laura for being my paranimf. The wonderful felines Goran and Oedi deserve mention for their companionship on my working from home days.

My biggest thank you is for Joost, for reasons which are unputdownable in words.
2.2.2.3 Den Dikken (1995) 52
2.2.2.4 Svenonius (1996a) 54
2.2.2.5 Conclusion 57

2.2.3 Split VP analyses of Present-Day English verb-particle combinations 57
2.2.3.1 Radford (1997) 58
2.2.3.2 Harley and Noyer (1998) 60
2.2.3.3 Svenonius (to appear): split PP 62
2.2.3.4 Ramchand and Svenonius (2002) 64
2.2.3.5 Conclusion 66

2.2.4 Other analyses of Present-Day English verb-particle combinations 67
2.2.4.1 Haegeman and Guéron (1999) 67
2.2.4.2 Wurmbrand (2000) 69
2.2.4.3 Zeller (2001a, 2002) 71
2.2.4.4 McIntyre (2004) 74
2.2.4.5 Blom (2005) 76
2.2.4.6 Conclusion 77

2.3 Summary and conclusions 77

3. A lexical decomposition analysis of the Present-Day English verb-particle combination 79
3.1 Present-Day English particles as optionally projecting elements 80
3.2 A lexical decomposition analysis of verb-particle combinations 84
3.3 An account of the syntax of verb-particle combinations 89
3.4 Accounting for other selectional properties of verb-particle combinations 94
3.4.1 The structure of unaccusative and unergative verb-particle combinations 94
3.4.2 Unselected objects 97
3.5 Verb-particle combinations in word formation processes 98
3.6 Conclusions 99

Part II The origins of the verb-particle combination 101

4. Particles and prefixes in late Old English 105
4.1 The historical background of English particles 105
4.2 Particles and prefixes in Old English 107
4.2.1 Old English syntax 107
4.2.1.1 Word order 107
4.2.1.2 Verb-Second 109
4.2.2 Inseparable Complex Verbs (ICVs) in Old English 112
4.2.2.1 Analysing the properties of Old English ICVs 112
4.2.2.2 The Old English prefixes 115
4.2.2.3 Old English ICVs in the literature: Hiltunen (1983) 127
CONTENTS

4.2.3 Separable Complex Verbs (SCVs) in Old English 131
 4.2.3.1 Analysing the properties of Old English SCVs 132
 4.2.3.2 The Old English particles 137
 4.2.3.3 Old English SCVs in the literature 150
4.3 A corpus study of Old English particles 163
 4.3.1 The corpus 163
 4.3.2 Results of the corpus study 164
 4.3.2.1 SCVs in main clauses 166
 4.3.2.2 SCVs in coordinate main clauses 170
 4.3.2.3 SCVs in subordinate clauses 171
4.4 Conclusions and outlook 173

5. A formal syntactic analysis of the Old English separable complex verb 175
 5.1 Fischer et al. (2000): a secondary predicate analysis of Old English SCVs 175
 5.2 A lexical decomposition analysis of Old English SCVs 178
 5.3 An account of the word order options of Old English particles 180
 5.3.1 Biberauer and Roberts (2005): Old English as a Spec-pied-piping language 180
 5.3.2 A pied piping analysis of the syntax of Old English SCVs 187
 5.4 Conclusions 205

Part III The growth and development of the verb-particle combination 207

Introduction 209

6. Transitional particle syntax: the rise of the postverbal particle 211
 6.1 The decline of the prefixes 211
 6.2 The rise of the verb-particle combination 215
 6.2.1 Changes in the meaning of particles in the early Middle English period 215
 6.2.2 The structural status of Middle English particles 219
 6.2.3 The syntax of early Middle English 227
 6.2.4 From preverbal particle to postverbal particle 231
 6.2.5 The position of particles in the early Middle English period 232
 6.2.6 Middle English VPCs and word formation 233
 6.3 A corpus study of early Middle English particles 237
 6.3.1 The corpus 237
 6.3.2 Study 1: The position of the particle in the (early) Middle English period 237
 6.3.2.1 Verb movement 267
 6.3.3 Study 2: Language contact and the position of early Middle English particles 269
 6.3.3.1 Contact-induced language change 270
6.3.3.2 Language contact with Old Norse in the tenth and eleventh centuries A.D. 271
6.3.3.3 Results of the corpus study 273
6.4 Conclusions and outlook 279

7. A formal syntactic analysis of the early Middle English verb-particle combination 281
7.1 Analyses of the shift to postverbal particles in the literature 281
7.1.1 Fischer et al. (2000) 281
7.1.2 Van Kemenade and Los (2003) 283
7.2 A lexical decomposition analysis of early Middle English VPCs 284
7.3 A pied piping analysis of particle syntax in early Middle English 286
7.3.1 The loss of VP pied piping in early Middle English 286
7.3.2 An account of the shift to postverbal particles 290
7.4 Conclusions 305

Summary and conclusions 307

Appendices 311
I A list of Old English texts 313
II A list of Middle English texts 317

References 321

Samenvatting (Summary in Dutch) 331

Curriculum Vitae 341
Introduction and outlook

This thesis presents a study of the historical syntactic development of English verb-particle combinations and proposes a synchronic and diachronic analysis of their structure and syntactic distribution. Verb-particle combinations consist of a lexical verb and a verbal particle (henceforth particle). Particles are mostly mono-syllabic words which look like prepositions, but have a distinct syntax. Some examples of Present-Day English verb-particle combinations are presented in (1).

\[(1)\]
\begin{enumerate}
\item \(\text{“We have to understand people will talk us up as favourites…”}\\\text{Frank Lampard, Guardian Unlimited (www.guardian.co.uk), 22 June 2006}\)
\item \(\text{“… Foucan is quick to point out the dangers of reckless copycat stunts.”}\\\text{BBC News (www.bbc.co.uk), 23 June 2006}\)
\item \(\text{“But help is at hand as a service launches to let people track down the nearest [wi-fi] hotspot using a mobile phone.”}\\\text{BBC news (www.bbc.co.uk), 17 September 2004}\)
\item \(\text{“If you’re parked on private property, how long do clampers have to wait before they can tow your car away?”}\\\text{Question X (www.bbc.co.uk), 13 February 2006}\)
\end{enumerate}

The examples in (1) illustrate some of the striking characteristics of Present-Day English verb-particle combinations. The object of the verb-particle combination may occur before the particle, (1a) and (1d), or immediately following the particle, (1b) and (1c). The meaning of the particle may be quite literal, as in (1d), but is often non-literal, as in (1a)–(1c), in which case its interpretation is dependent on the meaning of the entire combination. In some cases, such as (1c) and (1d), the presence of the particle appears to be motivated by the need to express more clearly the result of the action denoted by the verb. These are only a few of the many intriguing characteristics of the Present-Day English verb-particle combination.

The verb-particle combination in Present-Day English

Present-Day English verb-particle combinations have long been the subject of linguistic debate when it comes to their structural status. The reason for this is that the syntactic and morphological properties of Present-Day English verb-particle combinations indicate that particles behave as independent syntactic elements, but at the same time appear to form a lexical unit with the verb. This paradox has given rise to numerous proposals which treat English verb-particle combinations as syntactic constructs, or as morphological constructs. More recently, accounts have been proposed in which particles are optionally projecting heads, representing a head (X0) as well as a phrase (XP), thus capturing the observation that Present-Day English verb-particle combinations are at the boundary of syntax and morphology.
Analysing Present-Day English verb-particle combinations is further complicated by a syntactic peculiarity, not found in other Germanic languages, which is the word order alternation exemplified in (2).

(2) a. “If you're parked on private property, how long do clampers have to wait before they can **tow** your car **away**?”
 Question X (www.bbc.co.uk) 13 February 2006
b. “Altogether 22 councils in the region are providing a free service to **tow away** unwanted cars.”
 BBC News (www.bbc.co.uk), 17 January 2005

These two word orders are available to a predominant number of Present-Day English verb-particle combinations, some combinations with an idiomatic meaning being the notable exceptions. An important observation regarding this word order alternation is that there appears to be no meaning difference between the two orders. This suggests that the alternation represents a case of true optionality, providing a challenge for any syntactic account of Present-Day English verb-particle combinations.

The paradoxical status of Present-Day English verb-particle combinations (morphological or syntactic? word or phrase?) as well as the word order alternation pose a challenging problem for linguists attempting to formally analyse these verb-particle combinations. Numerous accounts have been proposed, none of which succeed in fully describing, let alone explaining, all the characteristics of verb-particle combinations. This thesis, after reviewing the analyses that have been proposed in the literature, proposes an analysis of Present-Day English verb-particle combinations that accounts for their syntactic, morphological and semantic properties.

Apart from having striking morphological and syntactic properties, Present-Day English verb-particle combinations are also endowed with a fine-grained semantics. Present-Day English particles express a wide range of meanings. One and the same particle may have more than one meaning, and the meaning it carries depends on the verb it combines with. This is illustrated for the particle *up* by the following examples.

(3) a. “I have a ceramic dog **digging up** the garden and a happy mushroom sitting at the base of a fence, …”
 Telegraph Gardening (www.telegraph.co.uk), 23 June 2006
b. “The FBI detains seven people suspected of planning to **blow up** Chicago's Sears Tower and other targets.”
 BBC News (www.bbc.co.uk), 23 June 2006
c. “Brain injury fireman **wakes up** after ten years”
 Telegraph (www.telegraph.co.uk), 5 May 2005
d. “Murray, ..., has a sponsorship deal with the sportswear company **set up** by Perry.”
 Reuters (www.reuters.co.uk), 23 June 2006
e. “The island saviour of lost souls who imported ‘slaves’ to do up his house”
Times online (www.timesonline.co.uk), 23 June 2006

In (3a), the particle *up* expresses a literal meaning, signifying the meaning the particle has in isolation, i.e. upward motion. This literal meaning of *up* is also discernible in (3b), albeit somewhat more obscured. In (3c), the particle *up* denotes emergence, influenced by the verb *wakes*, and there is also a sense of completion. A perfective sense is present in examples (3d) and (3e) too, with the particle *up* in (3d) also expressing initiation. The meaning of the particle *up* in (3e) involves improvement, and is clearly perfective.

The bulk of Present-Day English verb-particle combinations have in common a change-of-state semantics. Their meaning constitutes a complex event, which consists of the action denoted by the verb and the endstate or –point expressed by the particle. This is illustrated by the example in (4).

(4) “Remove the eggs from the water and peel off their shells.”
BBC Food (www.bbc.co.uk)

The example in (4) shows how the particle *off* expresses the resulting endstate of the object undergoing the action, i.e. *their shells* undergo the action of peeling (expressed by the verb *peel*) and reach the endstate of being ‘off’. The focus of this thesis is on the syntax and syntactic development of the English verb-particle combination, though the discussion also pays ample attention to the core change-of-state, and often resultative, semantics of the verb-particle combination.

The analysis proposed in this thesis treats Present-Day English particles as elements ambiguous between head (Prt) and phrase (PrtP). A structural economy principle which favours less structure over more prevents the particle from projecting a phrase unless there is robust evidence for the language speaker to do so. Particles, then, do not project a phrase by default and as heads they are dependent elements which are forced to combine with the verb (forming a complex head). When particles project a phrase, they are independent syntactic elements with their own particle syntax. The resultative semantics of Present-Day English verb-particle combinations is captured by the combination of the verb and the particle which, as a complex predicate, predicate over the object.

The history of the English verb-particle combination

The second part of this thesis investigates the historical development of the English verb-particle combination, focusing on the transition from the Old English period (±500–1100) to the Middle English period (±1100–1500). Old English had a system of separable complex verbs and a system of inseparable complex verbs, much like Present-Day Dutch (cf. Blom 2005). The separable prefixes were syntactically independent elements, whereas the inseparable prefixes were morphologically dependent on the verb. This thesis is concerned with the separable prefixes, which I will term particles because of their syntactic independence.
Unlike the synchrony of the English verb-particle combination, its diachrony has not received a great deal of attention in the literature. Old English particles, for example, are often discussed in studies of Old English syntax, but mostly as a diagnostic for finite verb movement only. Old English particles could be stranded by verb movement, thus indicating the underlying position of the moved finite verb. This is illustrated by the example in (5).

(5) Da ahof he his eagan upp þa he on þam tintregum wæs, then lifted he his eyes up when he in the torments was
‘Then he lifted up his eyes when he was in great pain’
(\textit{West-Saxon Gospels; cowsgosp}, Lk [WSCp]:16.23.5003)

In this eleventh century example, the finite verb \textit{ahof} ‘lifted’ has undergone verb movement to the second position in the clause (V2), stranding the particle \textit{upp} ‘up’. Despite this interest in the diagnostic position of Old English particles, there have been hardly any attempts at investigating the structural status of Old English (and Middle English) particles and the syntax of verb-particle combinations in Old and Middle English. The shift in particle position in the transition from Old to Middle English has been viewed principally in light of the loss of OV orders in favour of VO orders, but apart from Hiltunen’s (1983) lengthy study, there have been no detailed investigations into particle syntax and changes in particle syntax in this period of English, or indeed into the grammatical status of particles.

The second part of this thesis presents a detailed description of Old and Middle English particles, arguing that Old English particles were syntactically independent elements, projecting a phrase. After the transition to the Middle English period, particles, now invariably in postverbal position, came to be more dependent on the verb, and no longer always project a phrase. This grammaticalisation from phrase to head is ascribed to considerations of economy. The study of the diachrony of the English verb-particle combination also includes a formal syntactic analysis of the distribution of Old English separable complex verbs and of the changes in the distribution of verb-particle combinations in the transition to Middle English. The analysis provides insight into how the English verb-particle combination developed from the Old English separable complex verb, claiming this is a result of changes in grammatical checking options and from changes in the structural status of particles.

The study not only sheds light on the historical development of English verb-particle combinations, but also shows that there is robust evidence for particle stranding by verb movement even in early Middle English. Moreover, the study provides a fuller understanding of the English verb-particle combination as we know it today. It underwent a grammaticalisation path from fully-fledged phrasal secondary predicate in Old English to an optionally projecting secondary predicate in Present-Day English.

\textit{Organisation of the thesis}

The thesis is organised as follows: Part I of the thesis contains the synchronic study of the English verb-particle combination and consists of three chapters. In Chapter 1, I provide an
overview of the syntactic, morphological and semantic properties of Present-Day English verb-particle combinations. Chapter 2 discusses existing analyses of the Present-Day English verb-particle combination, and points out both strengths and weaknesses of the analyses that have been put forward in the literature. In Chapter 3 I propose a lexical decomposition analysis of Present-Day English verb-particle combinations which captures their change-of-state semantics, their syntactic and their morphological properties.

Part II of the thesis, comprising two chapters, is concerned with the origins of the English verb-particle combination. Chapter 4 provides the Indo-European and Gothic background and discusses in detail the Old English precursors of the Present-Day English particles: the separable prefixes. In discussing the Old English separable complex verb system, a comparison is made with the Old English inseparable complex verb system and criteria for particlehood are identified. It is shown that Old English particles are syntactic secondary predicates, warranting an analysis in which they are phrases. In Chapter 5 I propose a formal syntactic analysis of Old English separable complex verbs, cast in a Kaynian framework, which accounts for the syntactic distribution of Old English particles.

Part III of the thesis is concerned with the growth and development of the English verb-particle combination and comprises two chapters. In Chapter 6 I provide a detailed description of particles in early Middle English and the changes they underwent after the Old English period. I present evidence that shows that there is an increase in the syntactic dependence of particles in (early) Middle English and analyse this as an instance of grammaticalisation by which particles are increasingly analysed as heads rather than phrases. Chapter 7 presents a formal syntactic analysis of the shift to postverbal particles and the syntactic distribution of particles in early Middle English in general.
Part I The English verb-particle combination: theoretical framework
1 The verb-particle combination in Present-Day English

The English language has a rich array of verbs that consist of more than one word. Commonly known as phrasal verbs, they are composed of a verb and a particle and this technique is creatively employed by speakers to express one (complex) meaning. As the set of examples in (1) illustrates, they come in many different types and forms.

(1) a. He cannot seriously expect his hamster to **pick up** the newspaper for him.
b. The four unmanageable kids **chucked** their parents right **out**.
c. Her boyfriend does nothing but **veg out** and sleep these days.
d. Their efforts to **cheer up** the singer who lost her voice were useless.
e. The artistic impulses of the zoo-keepers really **cheesed** the purple monkeys **off**.
f. The hairdresser tried to **calm down** his mistakenly permed customer.
g. The frustrated athlete **put** the weights **down** on the instructor’s foot.
h. The escape to the country failed miserably because of a badly **thought-out** plan.
i. The slug in her lettuce was a bit of a **turn-off**.
j. Clubs have the right to refuse entrance to girls who are not **tarted-up**.
k. These determined **lookers-on** are not likely to leave before dawn.
l. His goal in life is to become a successful **sucker-upper**.
m. **The switching off of the lights** continues to fascinate the night watchman.
n. The burglar could not believe his luck when he discovered the bank was extremely **breakinable**.

A first glimpse of phrasal verbs, or verb-particle combinations (henceforth VPCs), reveals a great diversity in form and meaning. With respect to the latter, it is especially noticeable that the meaning of VPCs is not always transparent. In fact, a large number of VPCs has a meaning that is not predictable from that of its parts. This is what makes VPCs so difficult to learn for non-natives. Another difficulty lies in the form of the particle, which often resembles that of prepositions and therefore can be hard to distinguish from one another. Moreover, the construction is very productive, which means that new combinations are formed on a regular basis. The invention of new combinations is not always the result of the introduction of a new concept, witness the fact that some VPCs have a simplex (often Latinate) verb synonym, e.g. *turn down* 'reject, refuse', *bring up* 'raise'. This is why VPCs have been judged informal and highly colloquial in traditional grammars. Despite, or maybe thanks to this status, the construction is flourishing more than ever. This chapter presents the intriguing syntactic, morphological and semantic characteristics of the Present-Day English (roughly 1800– present) VPC.
1.1 Particles as a separate category

English particles constitute a closed class, which centrally includes *up, out, down, off, in, as well as the less frequent *back, on, away, over, around, about, along.* Many particles have the same phonological form as prepositions, but they are distinctly a separate class on the basis of their syntactic distribution, which differs considerably from that of prepositions. The examples in (2) illustrate this.

\[(2)\]
\[
\begin{align*}
\text{a.} & \quad \text{*Down the family custom grandma passed.} \\
\text{a'.} & \quad \text{Down the mountain the bear cycled.}
\end{align*}
\]
\[
\begin{align*}
\text{b.} & \quad \text{Grandma passed the family custom down.} \\
\text{b'.} & \quad \text{*The bear cycled the mountain down.}
\end{align*}
\]
\[
\begin{align*}
\text{c.} & \quad \text{*Grandma passed down the family custom and the storyteller on the tale} \\
\text{c'.} & \quad \text{The bear cycled down the mountain and the fox up the hill.}
\end{align*}
\]
\[
\begin{align*}
\text{d.} & \quad \text{The storyteller passed on the tale and the journalist the news.} \\
\text{d'.} & \quad \text{*The bear cycled down the mountain and the moose the hill.}
\end{align*}
\]

The constituency test in (2a), fronting of the particle together with the NP object, yields an ungrammatical sentence and thus shows that the particle and the NP object do not form a constituent. In (2a'), on the other hand, fronting of *down* together with the NP *the mountain* is possible, indicating that they form a constituent. Thus, while we are dealing with a preposition in (2a'), (2a) contains not a preposition but a particle. A second distributional difference between particles and prepositions reveals itself when the order of the elements is altered. In (2b), the particle and the NP object have been inverted, which gives a grammatical sentence. Inversion produces an ungrammatical sentence when a preposition is involved, as (2b') shows. Particles and prepositions also pattern differently with respect to gapping, witness the examples in (2c, c') and (2d, d'). In the coordinated sentence in (2c), the verb is omitted, and this results in an ungrammatical sentence. This indicates that the verb and the particle form a close unit, which does not allow gapping of one of its parts. The bond between the verb and the particle is also apparent from the irreplaceability of the particle, e.g. *Olivia bottled up/*down/*in/*off her anger and frustration* (cf. Haegeman and Guéron 1999: 254). By contrast, omission of the verb in the coordinated sentence in (2c') is allowed. This follows from the looser tie between verbs and prepositions compared to that between verbs and particles. Rather than with the verb, prepositions form a constituent with their object. The observation that particles form a unit with verbs predicts the possibility of gapping the verb together with the particle. This prediction proves true, as the example in (2d) shows. Similarly, we expect such gapping to be impossible with prepositions, since they form a constituent with an NP.

The distributional differences can be linked directly to the distinct argument structures of particles and prepositions. Particles, unlike prepositions, do not have a complement. Svenonius (2002a) captures this observation by demonstrating a robust semantic pattern concerning the type of constituents English particles and prepositions combine with. The complement of prepositions are typically Grounds (Talmy 1978), i.e. entities expressing *a
location with respect to which the Figure is located” (Svenonius 2002a: 433). A Figure (Talmy 1978) expresses “the entity in motion or at rest which is located with respect to the Ground” (Svenonius 2002a: 432). The example in (3) is taken from Svenonius (2002a: 433), his example (10b).

(3) The cook twisted the lid [PP off the jar] Figure Ground

The example shows that prepositions relate an entity (in (3) the Figure) to a certain location (the Ground). Particles denote the endstate or –location of a Figure and do not combine with a Ground, (4).

(4) The cook twisted (off) the lid (off).

Structurally, these relations may be structurally represented as indicated in (5) (from Svenonius 2002b: 6), using the examples in (3) and (4).

(5) a. PP b. PP c. PP

Figure the lid Figure the lid Figure the lid
P’ Ground P’ P’ Ground
off the jar off * off the jar

The structure for prepositions in (5a) represents what Svenonius calls transitive prepositions. Prepositions can also be unaccusative, in which case they combine with a Ground, (5c). This is not possible with example (3), assuming that the jar is not twisted off of something else (Svenonius 2002b: 6), but can be illustrated with the example The helicopter flew up the mountain (Svenonius 2002b: 6). Although there is no Figure in unaccusative PPs, it seems that a Figure is not entirely absent. The matrix subject, in this case the helicopter, is the Figure (cf. the helicopter is up). Particles are treated as intransitive prepositions: they do not combine with a Ground, therefore have no internal argument, (5b). They do have an external argument, i.e. the Figure. Under standard X’-theory, particles are structurally defective in the sense that they do not have a complement.¹

Although VPCs normally leave their Ground implicit, there are examples in which the Ground is expressed. In such cases, the Ground has been promoted to object of the entire VPC (see Svenonius 1996b, 2002a; Zeller 2001b; McIntyre 2003). Examples are given in (6) (from McIntyre 2003: 128–130).

¹ Svenonius (1996a) proposes that the complement position of English particles is occupied by an abstract complement Ø, which incorporates into the particle. See Chapter 2 for discussion.
In the (i) examples, the particle predicates over the Figure, expressing the Path of the activity, while in the (ii) examples, the subject of the particle is a Ground, denoting the Place (see also Svenonius 2002a: 433). According to Svenonius (1996b: 31), examples like the ones in (6) often involve a Ground which is a Theme or Patient argument of the transitive verb of the VPC, e.g. The waiter wiped the table. He also notes that the suppressed Figure often denotes something that is removed from the Ground. McIntyre (2003: 130) observes that VPCs with an explicit Ground (reference object in McIntyre’s terminology) have a strong holistic effect. Pour the bucket out, for example, has the interpretation that the bucket is emptied completely. The same effect is noted for similar cases in German by Zeller (2001b). He observes that an object such as a beer in John had a beer can refer simultaneously to the Theme (beer) or to the Container holding the beer (a glass, bottle) (Zeller 2001b: 279). This, according to Zeller, causes examples like the ones in (6) to have a strong completive interpretation. I suggest that the suppression of the Figure (i.e. the theme argument) is caused by semantic (and maybe pragmatic) factors. The completion of the event can be given more emphasis by expressing the Ground.

1.2 The distribution of particles

A striking characteristic of particles is their alternating position, illustrated by the examples in (7), repeated from (1).

(7)
a. He cannot seriously expect his hamster to **pick up** the newspaper for him.
b. The artistic impulses of the zoo-keepers really **cheesed** the purple monkeys off.

Particles can occupy the position immediately following the verb, as in (7a), or may follow the object which intervenes between the verb and the particle, as in (7b). Crucially, all VPCs occur in this word order alternation, hence **pick the newspaper up** and **cheesed off the purple monkeys** are the possible alternates for (7a) and (7b) respectively. In relation to this, it is interesting to note the semantic correspondence between the two word orders. The fact that there is no obvious difference in meaning between the two suggests that the choice between the two word orders is entirely optional. If this is indeed the case, the question is

2 It is important to note here that there are VPCs which do not show the alternation. These concern idiomatic cases whose order has become fixed. An example is *to sing up a storm* 'sing loud, sing vigorously'.
raised how such optionality can be theoretically implemented. In view of their semantic equivalence, an analysis in which the two structures are somehow related to each other seems most obvious. Such an analysis needs to determine how the two orders are related and what determines which of the two orders is chosen. Several linguists have pointed out, for instance, that the two word orders have different information structures and that the choice of word order is determined by the kind of information expressed by the particle and the object (Bolinger 1971, Svenonius 1996a, Dehé 2002). The role of pragmatics is also implied by the so-called definiteness effect. Bolinger (1971: 64), for example, points out that a definite noun phrase will occur in between a verb and an adverb, *You must do the job again versus You must do again the job, because of their semantic content. By definition they are not newsworthy as they refer to a previously mentioned element. He notes that VPCs are not subject to this restriction and that the word order may alternate depending on the relative semantic weight of the elements involved.

English particles may also be separated from their verb by an adverbial modifier, (8a), or by an object and an adverbial modifier, (8b), repeated from (1b).

(8) a. After a couple of beers, Malcolm passed straight out.
 b. The four unmanageable kids chucked their parents right out.

Strikingly, however, modification of the particle is impossible when the particle precedes the object, (9).3

(9) *The four unmanageable kids chucked right out their parents.

This demonstrates that nothing may intervene between the particle and the object when the object follows the particle and raises questions about the structural status of the verb and the particle in this order. While it is clear from the separability facts we have seen so far that the particle is an independent syntactic element, the ungrammaticality of (9) casts doubt on this view.

Other distributional facts add to the uncertainty about the independent status of English particles. Consider the example involving coordination in (10).

(10) Niles lazily cleaned up and dusted the living room.

In (10), the VPC clean up is coordinated with a simplex V, dust. On the assumption that coordination is only possible with like structures (i.e. head with head, phrase with phrase), examples such as this one suggest that the particle forms a (complex) V together with the verb. Note, however, that coordination of two particles is also possible, (11).

\[\text{Kayne (1985: 127) notes that modification of the particle in this position is possible when the object is heavy, cf. (i) (from Kayne 1985: 127, his example (137)).}\]

\[\text{John looked right up the information I had asked for.}\]
Our cat Daisy kept switching the light on and off.

In this example, the coordinated particles occur separated from the verb, which is a first indication of their independent status. Moreover, the fact that modification of both particles is possible, i.e. *Daisy switched the light right on and right off*, also argues in favour of an analysis in which particles are independent elements (XPs).

The set of elements that can intervene between the verb and the particle is restricted to the ones we have discussed so far, namely objects (full DPs or pronouns) and adverbial modifiers such as *right, straight* (cf. Den Dikken 1995), or a combination of these two. A familiar quirk in the element order of VPCs is the unavailability of the V–Prt–NP order when the object is pronominal, (12).

(12) a. They failed to cheer her up.
 b. *They failed to cheer up her.

In contrast with modification, separating of the verb and the particle is obligatory. When the pronominal object receives stress, on the other hand, it is allowed to follow the verb and the particle (cf. Bolinger 1971; Fraser 1976; among others). The examples in (13) are from Fraser (1976: 17), his example (1*58). The example in (14) is from Dickens’ *Our Mutual Friend* (from van Kemenade and Los 2003: 85, their example (15)).

(13) I didn’t say to call up HER.
 Figure out THESE, not THOSE.
 Don’t mix up HIM, he’s already in a mess.

(14) ‘If you force your confidence upon me, Mr. Headstone, I’ll give up every word of it. Mind! Take notice. I’ll give it up, and I’ll give up YOU. I will’
 (Dickens, *Our Mutual Friend*, 673)

These facts show that an explanation of the distribution of English particles should also take into account prosodic factors.

English particles may be fronted to sentence-initial position, (15).

(15) Off he took his bowler hat.

Particle topicalisation is employed to bring the particle into focus (cf. Cappelle 2002: 57; Dehé 2002: 110). Not all particles can be fronted in this way, however. Consider the examples in (16).

4 Recall that this was also suggested by the expansion of the modification possibilities when a heavy object (which typically receives focus) is involved.
The factor ruling out (16a’) and (16b’) is semantic in nature, as has been pointed out by several linguists (Bolinger 1971; Wurmbrand 2000; Cappelle 2002; Zeller 2002). The particle *up in (16a) has a transparent (i.e. directional) meaning and can be topicalised. In (16a’), the meaning of the particle *up is not transparent and fronting is not allowed. The same contrast is demonstrated by examples (16b) and (16b’), where the meaning of the particle *down is transparent in one case, (16b), and non-transparent in the other, (16b’).

In his discussion on particle preposing, Cappelle (2002) argues that particle fronting is only allowed with particles that are semantically independent (see also Lüdeling and de Jong 2002: 316). One test for semantic independence he gives is “the possibility to use the particle with the same meaning outside verb-particle constructions (e.g. after the copula be)” (Cappelle 2002: 57). This ties in with his definition of particles with a transparent (Cappelle: literal) meaning. He assumes that “a particle is literal if its meaning is constant across different verb-particle constructions, in other words, if its meaning is not dependent on the particular verb it combines with. Defined this way, a literal particle does not have to express a direction in physical space” (Cappelle 2002: 56). Cappelle shows that particle preposing is not restricted to particles with a directional meaning, hence adopts a definition in terms of semantic independence. Other tests for semantic independence of the particle mentioned by Cappelle are the existence of a contrastive counterpart (*up–down, in–out, on–off) and the possibility of reduplicating it (Cappelle 2002: 57).

Cappelle notes that the semantic condition on topicalisation is directly related to the focus/background structure of sentences. The topic position of a sentence is a prominent position in terms of information content (Cappelle 2002: 58) and hosts foregrounded elements. An element can only be foregrounded when it has semantic content of its own. This explains why transparent particles, but not non-transparent particles, can be fronted.

On the general assumption that only phrases can topicalise, the topicalisation facts presented here indicate that transparent particles should be analysed as phrases. Importantly, the fact that non-transparent particles cannot topicalise does not prove that they are not phrases. The inability to topicalise is related to semantic factors and does not provide evidence for the structural status of non-transparent particles (cf. Lüdeling and de Jong 2002: 316).

5 It has been observed that preposed particles pattern like PPs in locative inversion constructions, e.g. *Down the hill rolled the baby carriage (Cappelle 2002: 58; Jackendoff 2002: 75; Zeller 2002: 244).

6 My definition is (partly) based on the historical origins of particles. In Old English, particles predominantly had a transparent meaning. In the Middle English period, non-transparent meanings developed from these. I therefore consider the directional (transparent) meaning of particles as their original meaning.
1.3 Verb-particle combinations and word formation

English VPCs can be the input to word formation, as the examples in (17), repeated from (1), show.

(17) a. The escape to the country failed miserably because of a badly thought-out plan.
b. The slug in her lettuce was a bit of a turn-off.
c. Clubs have the right to refuse entrance to girls who are not tartered-up.
d. These determined lookers-on are not likely to leave before dawn.
e. His goal in life is to become a successful sucker-upper.
f. The switching off of the lights continues to fascinate the night watchman.
g. The burglar could not believe his luck when he discovered the bank was extremely breakable.
h. The team showed great bouncebackability.7

Examples (17a), (17c) and (17g) contain adjectives formed from VPCs, examples (17b), (17d), (17e) and (17h) all contain nouns formed from VPCs. The fact that VPCs can take part in word-formation processes adds to the puzzle posed by their structural status. On the traditional assumption that word-formation targets words, the facts presented in (17) provide evidence for an analysis which treats VPCs as words. Apart from the problems such an analysis would face in dealing with the syntactic separability of VPCs, the form of the VPCs deviates from that of other morphological constructs, which questions their status as morphological words.

The possibility of word formation not necessarily points to word status, given that word-formation can target phrases too (cf. Booij 2002). This is illustrated by the examples in (18); the Dutch examples in (18b) are taken from Booij (2002: 27), his example (11).

(18) a. a happy-go-lucky person, a here-today-gone-tomorrow attitude
b. een blote vrouwen blad 'a nude women magazine', hete lucht ballon 'hot air balloon', doe het zelver 'do-it-yourself-er', ban de bommer 'ban-the-bomber'

In principle, then, the fact that VPCs can be converted into nouns and adjectives does not necessarily provide evidence for the claim that they are words.

7 Bouncebackability has recently been added to the online OED (draft entry June 2006). The entry states that it is chiefly found in sports commentaries and defines it as “the capacity to recover quickly or fully from a setback, bad situation, etc.”. The first possible example cited in the OED is from 1961, (i).

(i) The Tribe demonstrated its bounce-back ability in a three-game series with Washington, taking the set 2-1.
(Times Recorder (Zanesville, Ohio) 18 Apr. 2B/1)
An analysis which treats VPCs as words is also problematic in view of the order of the verb and the particle. If VPCs are words, the syntactic ordering of the verb and the particle (yielding a head-initial construct) is unexpected, given the form of regular English compounds, which are head-final, (19).

(19)
\[\begin{array}{ccc}
A^0 & N^0 \\
black & board & 'blackboard' \\
\end{array} \]

b. \[[i^o \text{ under}] [x^o \text{ world}]]x^o \quad 'underworld' \]

c. \[[x^o \text{ high}] [x^o \text{ light}]]x^o \quad 'highlight' \]

d. \[[x^o \text{ over}] [x^o \text{ ripe}]]x^o \quad 'over-ripe' \]

The head-finalness of English compounds is formulated in the Right-hand Head Rule (RHR), (20).

(20)
Right-hand Head Rule (RHR)
In morphology we define the head of a morphologically complex word to be the right-hand member of that word. (Williams 1981: 248)

VPCs would thus violate the RHR, which indicates that they are not morphological constructs. Another argument against treating VPCs as words is that the stress pattern of VPCs differs from that of compounds (Emonds 1993: 243 fn. 27). Compare the examples in (21a) and (21b), where the stressed syllable is underlined.

(21)
a. hand[-71x81]bag, ear[-71x81]plug, pin[-71x81]-table
b. rip off, dart out, polish up

In English compounds stress is placed on the left-hand member, (21a). This contrasts with VPCs, whose right-hand member receives stress, (21b).\(^8\)

The status of converted VPCs is not clear-cut either. English compounds generally do not allow internal suffixation (e.g. *hands-bag versus handbags), but VPCs standardly do, (22).

(22)
spiced-up meat, runners-up

The internal suffixation displayed by English VPCs is problematic for an analysis treating (converted) VPCs as words. Examples such as the ones in (22) suggest that conversion into a noun or adjective takes place after suffixation.

The picture is further complicated by examples such as in (23), in which the suffixes have been attached to the particle rather than to the verb.

\(^8\) When VPCs are converted into nouns or adjectives, however, stress placement shifts from the right-hand to the left-hand member, e.g. an outrageous rip off.
(23) a. takedown\textit{able}
 b. put-out\textit{er}

 The adjectival suffix \textit{able} normally appears on the particle to form an adjective. The position of the agentive suffix \textit{er} is more variable (cf. looker-on) and the suffix may even appear more than once on the same converted VPC, (24).

(24) a. looker-upper, finder-outer, (wall-/floor-/door-)breaker-downer
 b. “I’m gonna be a glorified computer chucker-outer.” Michelle Dewsbury 10
 c. pointer-outer, sorter-upper, fixer-upper, giver-upper

 As the examples in (24) show, the agentive suffix \textit{er} can show up on the verb and on the particle at the same time. These curious facts have not yet been studied in great detail and in my view are illustrative of the ambiguous nature of English VPCs, which straddle the boundary between syntax and morphology.11 Suffixation on the verbal part follows syntactic principles, whereas suffix placement on the predicate part signals an interpretation of the VPC as a word. Reduplication of the suffix accommodates the principles of both syntax and morphology.

 Svenonius (2004) provides an explanation of reduplication with VPCs in terms of Halle and Marantz’ (1993) Distributed Morphology. For examples like picker-upper he argues that the suffix \textit{er} has to bind two thematic roles, namely SOR ‘subject of result’ (assigned in the specifier position of the particle) and SOP ‘subject of process’ (assigned in the specifier position of the verb). Apparently, this binding takes place twice in English (by reduplication of the suffix \textit{er}), rather than once, after the verb and the particle have combined. Svenonius does not mention the even more exotic examples involving retriplication, which require an additional explanation.

1.3.1 Nominalised verb-particle combinations

English VPCs may appear in nominalisations. As the examples in (26) show, they can occur with or without \textit{of}.

(26) a. [The \textbf{washing out} of the red wine stains] proved an impossible task.
 b. [The \textbf{shaking down} the apples] angered the neighbour.

9 From the Harry Potter books by J.K. Rowling. It is a “small magical object that looks like a cigarette lighter. When clicked, the Put-Outer turns off a street light. When reversed, balls of light fly back out of the Put-Outer and return to the street lights”, The Harry Potter lexicon – Magical items and devices (http://www.hp-lexicon.org/magie/devices_n-r.html).

10 Winner of The Apprentice 2006, in an interview for Pure T4 (Channel 4) on 13 May 2006.

11 McIntyre (2004) mentions such cases in a Linguist List issue (http://www.sfs.rphil.uni-marburg.de/linguist/issues/15/15.1346.html) and cites some references.
Adopting Chomsky’s (1970) terminology, the mixed nominalisation in (26a) differs from the gerundive nominalisation in (26b) in that it does not allow the particle and the of-phrase to invert: *The washing of the red wine stains out, versus The shaking the apples down. This reflects the syntactic situation, where the verb and the particle cannot be separated by a prepositional phrase either: *My sister washed the red wine stains of the carpet out (cf. Kayne 1985; Johnson 1991). Chomsky argues that gerundive nominalisations are derived from sentences, while mixed nominalisations are listed in the lexicon. According to Chomsky, the ungrammaticality of *The washing of the red wine stains out follows from the fact that mixed nominalisations are lexical, since syntactic operations cannot apply to it. The impossibility of the shift does not necessarily prove that mixed nominalisations are lexically listed, however, given that the inversion is also impossible in the syntax. Moreover, there are idioms which are lexically listed, but which still show sentential syntax in that idiom chunks can be moved (cf. Fraser 1976; Jackendoff 1997).

1.3.2 A note on prefixed verbs, nouns and adjectives

Present-Day English has a range of prefixed verbs, nouns and adjectives some of which are historically related to the VPCs under investigation in this thesis. Some are of later origin than Old or Middle English. They predominantly consist of up, out, down or over and a verb or noun. Consider the verbs with out in (27).

(27) outrun, outgrow, outnumber, outlive, outweigh

The prefix out– in the examples in (27) adds a sense of comparison to the meaning of the verb (Fraser 1976: 29). Thus, to outrun means running faster or longer than someone else and to outgun means winning a battle because you have more weapons than the other side. Fraser (1976: 29) points out that the addition of the prefix has a transitivising effect. The verb to run is intransitive, but to outrun requires a direct object, otherwise there is nothing or no-one to outrun. At the same time, the prefix out– may combine with transitive verbs as well (e.g. outthrow). The function of the prefix out– is similar to that of particles in VPCs, which also add a meaning to that of the verb and also have the ability to transitivise verbs. Prefixation with out– seems to be fairly productive, in that out– can freely be combined with new or existing verbs. Historically, some of these prefixed verbs are related to the prefixed verbs (inseparable complex verbs) that existed next to the VPCs in the Old English period (roughly 500–1100 A.D.), while others are of later origin. In the early Modern English period, the prefix out– meaning surpassing/exceeding is often attached to verbs (OED Online).

The prefix out– also appears in nouns and adjectives, and in these contexts it can express several meanings. In nouns like out-take and outcast, out– denotes removal from a certain point or place and they often have a verbal counterpart (the VPCs take out, cast out in this case). In outfield and outskirts, out– adds the meaning ‘not central’. In some cases, out– appears to have an ingressive meaning, as in outbreak and outburst. Some of these prefixed nouns and
adjectives appear to have been derived from VPCs, e.g. *out-take (take out), outcast (cast out), outburst (burst out).

The prefix *up– usually adds the meaning 'upwards', as in uphold, uproot and upgrade. Prefixed verbs with *up– are not as frequent as the *out– type prefixed verbs. Apart from verbs, there are a number of nouns with *up– as well, e.g. uprise/-ing, uproar, upswing, uptake, upturn. In such examples, the meaning of *up– is 'increase'. These prefixed nouns are formed differently from the prefixed verbs. The nouns are nominalised VPCs, cf. uptake/take up, uprise/rise up. The prefixed verbs, on the other hand, are formed in the old inseparable particle pattern, which is no longer productive (with the exception of the prefix *out–, see above), but which has resulted in several lexicalised cases.

The stress pattern of English prefixed verbs differs from that of English compounds, and is similar to that of English VPCs, e.g. *outrun, upgrade. In prefixed nouns and adjectives, on the other hand, stress is placed on the prefix and the pattern is similar to that of compounds. Like English compounds, English prefixed verbs, nouns and adjectives are head-final and therefore obey the RHR. This points to an analysis in which they are treated as words. This contrasts with the structural ambiguity of VPCs.

Roeper (1999: 5) observes a difference in argument structure between prefixed nouns and adjectives and VPC nominals and adjectives. The prefixed variant allows a complement and is non-agentive, (28a), while VPC nominals and adjectives do not permit a complement and involve a notion of agentivity, (28b).

(28) a. outbreak of disease (Roeper 1999: 3, example (5a))
 b. *takeout of food (Roeper 1999: 9, example (20))

The argument structure of prefixed nominals like the ones in (28a) is unaccusative, i.e. non-agentive. By contrast, VPC nominals, e.g. (28b), have an implied agent. Note that the VPC counterpart of outbreak, breakout, does allow a complement. Roeper (1999: 9, footnote) indeed acknowledges that there is a small number of counter-examples to the claim that VPC nominals do not allow complements. Nevertheless, the complement-pattern is very robust in general.

1.4 The meaning of verb-particle combinations

1.4.1 The meaning of the particle

The various particles of the English language all contribute their own special meaning to the verb they combine with. In this sense, English VPCs have a compositional meaning, even when the meaning of a VPC is completely idiomatic. The chart in (29) lists the most important meanings of the set of particles introduced at the beginning of this chapter. The classification is partly based on Kennedy (1967), but includes more particles and sometimes employs a different division.
As the chart shows, English particles have many meanings beside their core directional meaning. There are often still traces of the transparent meaning in the non-transparent meanings and the distinction is sometimes difficult to draw. In some cases, it may be hard to establish whether it is really the particle that contributes a certain meaning, or whether that meaning is already present in the verb itself. It is indeed the case that the meaning of the verb and the particle overlaps in certain cases. For example, in the VPC start up, both the verb and the particle carry the meaning 'initiation'. It is also possible that two different particles can contribute the same meaning. Thus, both up and down may express cessation, as
in slow up and quiet down. In fact, there is also a VPC slow down, whose meaning is (roughly) the same as that of slow up. The choice of particle, then, is not always straightforwardly predictable.

1.4.1.1 Particles and telicity

Another meaning that is shared by several English particles is that of completion. Transparent as well as non-transparent particles often express perfective aspect. They denote an endpoint or change of state of the activity or process expressed by the verb. Consider the example in (30).

(30) The bookstore gingered up its shop-window.

The addition of the particle up not only contributes perfectivity in the sense that the work on shop-window is finished, it also indicates a change of state. The telicity of particles can be tested in several ways, thanks to Verkuyl’s (1972, 1993) work on telic aspect. A well-known test is the ‘for X time’/’in X time’ test, (31).

(31) a. His hamster picked up his newspaper *for two minutes / in two minutes.
 b. Her boyfriend vegged out for a month / *in a month.

The adverbial phrase ‘for X time’ expresses a duration, whereas ‘in X time’ indicates that the action or event has an endpoint. Thus, the fact that the sentence in (31a) allows modification by ‘in X time’ indicates that it has telic aspect. This telic aspect is expressed by the particle, since the verb to pick on its own is not telic: *Jenny picked wild berries in one hour; instead, Jenny picked wild berries for one hour. The adverbial phrase ‘for X time’, on the other hand, signals an a-telic sentence, (31b).

Another test for telicity (Verkuyl 1972, 1993) involves the conjunction of two time adverbials, (32).

(32) a. His hamster picked up the newspaper in the morning and in the afternoon (unambiguous)
 b. Her boyfriend vegged out in the morning and in the afternoon (ambiguous)

Sentence (32a) has the unambiguous reading that the event of picking up the newspaper took place at two independent points in time, i.e. in the morning and in the afternoon. This signals a telic predicate. The sentence in (32b) has two possible readings, the first of which is that the event took place at two different points in time (with an interval). The alternative reading holds that the event took place continuously for the period of time denoted by the two time adverbials. The ambiguity indicates that the sentence is a-telic.
1.4.1.2 Particles and resultativity

Telicity is closely related to resultativity. Telic aspect expresses an endpoint or change of state and therefore a result. Thus, when particles contribute telic aspect, they also express a result. Many English VPCs indeed have a resultative meaning, expressing an event (denoted by the verb) whose endpoint or -state (denoted by the particle) has been reached, (33a). Leaving out the particle results in a loss of resultative meaning and thus in a loss of telicity (except in those cases in which the verb is inherently resultative itself, e.g. verbs such as make), (33b).

(33) a. Fang tore up the winning lottery ticket.
 b. Fang tore the winning lottery ticket.

The particle up in (33a) signals completion of the action of tearing the lottery ticket. Due to the absence of the particle in (33b) nothing indicates the completion of the tearing action.

Despite the connection between telicity and resultativity, a-telic sentences may in fact be resultative, as the example in (34) shows (cf. Goldberg and Jackendoff 2004).

(34) a. The hairdresser tried to calm down his mistakenly permed customer.
 b. The hairdresser tried to calm down his mistakenly permed customer for an hour.
 b’. *The hairdresser tried to calm down his mistakenly permed customer in an hour.

As the modification possibilities show, cf. (34b) and (34b’), the VPC calm down is a-telic. Interestingly, the VPC does have a resultative interpretation. The particle down expresses the result of the action/process denoted by the verb calm. This state of affairs arise as a result of the fact that the change of state expressed by the particle down is not bounded by an endpoint. Thus, while a change of state has been established, the endpoint has not yet been achieved.

While the bulk of English VPCs have a resultative interpretation, there are some notable exceptions. Consider the uses of the particles away, on, and along in (35).

(35) a. The inattentive audience chatted away throughout the entire play.
 b. Despite his disqualification, the driver raced on.
 c. The stray parrot tagged along.

In these examples, the particles away, on and along indicate the continuity of the action and express durative/progressive aspect. Durative/progressive VPCs are typically unergative and a possible transitive counterpart, such as The band’s new hit single helped along their album’s sales, has the effect of yielding a resultative reading. The differences in semantics between resultative and durative/progressive VPCs suggest that their syntactic structures are not alike. This will be discussed in Chapter 3.
1.4.1.3 The expressivity of particles

The meaning of the particle sometimes overlaps with that of the verb, as is the case in fall down. For this reason, it has been claimed that some particles do not add any meaning to that of the verb and are therefore redundant (Jackendoff 2002: 76). Typical examples are presented in (36).

(36) finish up (a novel), finish off (a cockroach), open up (a yogurt), close up (a hole)

The verb to finish inherently implies completion and the particles up and off contribute precisely this meaning. The same goes for open up and close up, where the verbs to open and to close by themselves imply complete opening and closure, respectively, which is also expressed by the particle up. Despite the overlap in meaning, the particles in these VPCs are by no means redundant, as Jackendoff implies. They serve to emphasise the endstate of an inherently telic activity, or, as Los (2004: 88) puts it, they draw “attention to the effectiveness of the action”.

1.4.2 The meaning of the verb

The classic studies on verbal semantics by Vendler (1957) and Dowty (1979, 1986) have proposed four classes of event types, including states, activities, accomplishments and achievements. The temporal properties of these verb classes are presented in the chart in (37), which is based on Vendler (1957).

(37) | | No duration | Duration |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Telic</td>
<td>Achievement e.g. arrive, reign</td>
<td>Accomplishment e.g. create, tell</td>
</tr>
<tr>
<td>Atelic</td>
<td>State e.g. feel, love</td>
<td>Activity e.g. write, run</td>
</tr>
</tbody>
</table>

Accomplishment verbs and activity verbs are distinguished from achievement verbs and state verbs in that the former express duration. Accomplishment verbs differ from activity verbs in that accomplishment verbs are bounded, whereas activity verbs are not. Closer inspection of the semantics of the verbs in English VPCs reveals that they are mostly activity verbs, (38a), or accomplishment verbs, (38b).

(38) a. carve up, pull off, send in
b. fall down, knock out, finish up
In VPCs containing activity verbs, (38a), the particle adds telic aspect to the entire event (the verb itself is atelic). Particles that combine with accomplishment verbs, as in (38b), add telic aspect too, but the difference is that the verb itself is already telic. The particle lends more expressivity to the boundedness of the event.

The verb in VPCs is predominantly monosyllabic and is often a light verb, such as *come/get/give/go/put/take*, which can combine with more than one particle, (39).

(39)

<table>
<thead>
<tr>
<th>verb</th>
<th>particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>come</td>
<td>up/in/down/out/off</td>
</tr>
<tr>
<td>get</td>
<td>up/in/down/out/off</td>
</tr>
<tr>
<td>give</td>
<td>up/in</td>
</tr>
<tr>
<td>go</td>
<td>up/in/down/out/off</td>
</tr>
<tr>
<td>put</td>
<td>up/down/out/off</td>
</tr>
<tr>
<td>take</td>
<td>up/in/down/out/off</td>
</tr>
</tbody>
</table>

Van Kemenade and Los (2003: 86) observe that a VPC verb is “not restricted to a light verb but may be any verb that can indicate the means or manner by which the result was reached, or even a verb that lexicalizes the predicate itself”. Verbs of the means-type signal the instrument used to reach the endstate (van Kemenade and Los 2003: 93) and include cases such as the ones in (40).

(40) belt up, butter up, chalk up, cork up, dish up/out, lace up, mop up, polish up/off, elbow out, hammer out, nose out, flag down, throttle back/down, clock out, fence off, mouth off, seal off

Manner verbs indicate the manner in which the endstate is reached (van Kemenade and Los 2003: 93). Examples are given in (41).

(41) bundle up, carve up/out, cook up, shake up/off, sharpen up, freeze out, portion out, rub out, chop down, shoot down, rattle off, wipe off

Sometimes the verb is a conversion of the predicate itself (van Kemenade and Los 2003: 93). In such cases, an adjectival or nominal predicate has been converted into a verb. An example is *cool down*, in which the verb *cool* has been converted from the predicate adjective *cool* (cf. the food is cool). Other examples are given in (42) and are taken from van Kemenade and Los (2003: 93), their example (32).

(42) back off/away, brazen out, cheer up, clean up/out/off/away, clear up/out/off/away, crack up, free up, gloss over, open up/out, parcel out, pretty up, round up/off
In some cases, the particle has become a verb. This is the case in examples like Mum offed the television, The butcher upped the prices, The hooligan downed the beer.

Some VPCs contain a verb that does not exist outside the combination with the particle. Examples are egg out ‘to relax and spend time doing very little’, (1e), cheese off ‘to annoy’, (1e), tart up ‘make more attractive by putting on make-up etc.’, (1f).

1.4.3 The complex event meaning of verb-particle combinations

English VPCs express a complex event, which consists of an activity or process (denoted by the verb) and an endstate (expressed by the particle). An example is given in (43).

(43) The January storm tore down our tree-house.

The object our tree-house is affected by the activity denoted by the verb and reaches the endstate denoted by the particle. The particle clearly functions as a resultative secondary predicate, analogous to adjectives and prepositional phrases in resultative constructions, (44).

(44) a. Pablo painted his nose red.
 b. She flushed her wedding ring down the loo.

In both examples, there is a resultative predicate (red and down the loo) which predicates over the direct object, denoting an endstate (red) or an end-location (down the loo). Particles, like down in (43), have the same secondary predicate function, but they have a different syntactic distribution. Resultative constructions such as the ones in (44) do not show the word order alternation available to VPCs. This is illustrated in (45) and (46).

(45) The January storm tore down our tree-house.
 The January storm tore down our tree-house.

(46) a. *Pablo painted red his nose.
 b. *She flushed down the loo her wedding ring.

The distributional difference also shows up in nominalisations. Particles must occur before the of-phrase in nominalisations, (47a), but adjectives have to appear after the of-phrase, (47b).

(47) a. the tearing down of the tree-house / *the tearing of the tree-house down
 b. *the painting red of his nose / the painting of his nose red

There are a few exceptions to the lack of the word order alternation with resultative constructions. The adjectives clean, open, free, short can appear immediately adjacent to the
verb, just like particles. As expected, these adjectives appear before the of-phrase in nominalisations, just like particles.

\[(48)\]
the tearing open of the envelope
\(\text{the tearing of the envelope open}\)

In Chapter 3, I will argue that the differences in distribution between particles on the one hand and adjectives and prepositional phrases on the other follow from differences in their structural status. I will propose that resultative adjectival and prepositional predicates are always phrases, whereas particles are ambiguous between head and phrase. When they are analysed as heads, they appear immediately adjacent to the verb.

1.4.4 Transparent verb-particle combinations

The complex semantics of English VPCs include transparent meanings. Some examples of transparent VPCs are presented in (49), repeated from (1).

\[(49)\]
a. He cannot seriously expect his hamster to pick up the newspaper for him.
b. The four unmanageable kids threw their parents right out.
c. The frustrated athlete put the weights down on the instructor’s foot.

In the group of transparent VPCs I include VPCs whose meaning can be inferred from the sum of the meaning of its parts. The meaning of the verb and of the particle in a transparent VPC corresponds to their meaning when used in isolation. Thus, the meaning of the VPC to pick up, ‘to lift something using your hands etc.’, in (49a) can be deduced from the meaning of the verb to pick ‘remove’ combined with that of the particle up ‘towards a higher position, upwards’. The same procedure applies to the VPCs in (49b) and (49c).

1.4.5 Non-transparent verb-particle combinations

A large number of English VPCs has a non-transparent meaning, but it is often hard to determine whether the meaning of a VPC is truly non-transparent or not. This is sometimes due to the fact that only part of the VPC is non-transparent. Consider for example the VPCs in (50), repeated from (1).

\[(50)\]
a. Their efforts to cheer up the singer who lost her voice were useless.
b. The artistic impulses of the zoo-keepers really cheesed the purple monkeys off.

The particle up in the VPC cheer up in (50a) does not express the meaning it has in isolation and is therefore non-transparent. The meaning of the verb to cheer, on the other hand, is transparent and the meaning of the entire VPC is compositional in the sense of Nunberg, Sag and Wasow (1994), mentioned in the discussion of Dutch Separable Complex Verbs (SCVs) by Blom (2005: 82). In their view, compositionality is defined as “the degree to
which the meaning of a construction, once known, can be analysed in terms of the contributions of its constituent parts” (Blom 2005: 82, citing Nunberg, Sag and Wasow 1994: 498). Under this definition, the meaning of cheer up is clearly compositional, even though the meaning of the particle up is nontransparent. Both the meaning of the verb and that of the particle contribute to the meaning of the entire VPC. Thus, VPCs with a non-transparent meaning can still have compositional semantics.

In (50b), the verbal part of the VPC cheese off, i.e. cheese, does not exist as a verb outside the VPC and its meaning in the VPC is non-transparent. It does not refer to the food made from milk, but its meaning is rather the result of the combination with the particle off. The meaning of the particle off is ‘not liking’ and is fairly transparent, because its isolated meaning, ‘movement away from’, can still be detected. Unlike the meaning of the VPC in (50a), the meaning of cheese off is non-compositional under Nunberg, Sag and Wasow’s (1994) definition of compositionality. It appears to be the particle that contributes most of the meaning to the meaning of the entire VPC, with the verb almost seeming a lexical dummy.

The semantics of English VPCs, which are often non-transparent, suggests that VPCs are listed in the lexicon as a unit. If this is the case, an explanation is needed for the separability of verb and particle in the syntax. Jackendoff (1997) proposes that idioms (i.e. for example non-transparent VPCs) have internal structure, which explains the syntactic movability.

Another option would be that the verb and the particle are listed separately in the lexicon and are inserted into syntax as two separate lexical items. This view must include an account for the complex event semantics of VPCs which are often non-transparent.

In Chapter 3, I will propose a lexical decomposition analysis of English VPCs and will claim that these lexically decomposed structures are in the syntax rather than in the lexicon. The meanings of VPCs are nevertheless stored in the lexicon, which I assume hosts idiosyncratic information (words and phrases). I assume that idiomatic constructs have internal structure (cf. Jackendoff 1997) which allows me to account for the syntactic behaviour of English VPCs.

1.5 The selectional properties of verb-particle combinations

1.5.1 Unaccusative and unergative verb-particle combinations

The bulk of the VPCs discussed in this chapter so far take an internal argument. Apart from transitive VPCs, English has a number of VPCs which do not have an internal argument. Some examples are given in (51).

(51) a. Her glasses fogged up when he entered the room.
 b. The parrot looked on as the cat challenged the chihuahua.
 c. She refuses to believe that the pain will wear off.
 d. He’s thinned down a lot since he quit his beer and sausage diet.
Many VPCs without an internal argument are unaccusative. Burzio (1986) defines unaccusative verbs as verbs without an external argument, which therefore are unable to assign structural case. This is formulated in Burzio’s Generalisation, (52).

(52) Burzio’s Generalisation
 (i) A verb which lacks an external argument fails to assign accusative case.
 (ii) A verb which fails to check accusative case fails to theta-mark an external argument.

The generalisation holds that the underlying direct object moves to the subject position (where it receives nominative case), because it cannot receive case in object position. Another group of verbs which lack an internal argument is the unergative class. The subject of unergative verbs is semantically and syntactically a real subject, in contrast with subjects of unaccusative verbs, which are objects underlyingly and therefore do not actively initiate the action of the verb. There are several unaccusative/unergative diagnostics for English (cf. Levin and Rappaport Hovav 1995; Alexiadou, Anagnostopoulou and Everaert 2004) that can be used to determine the argument structure of VPCs without an internal argument.

English intransitive verbs generally allow a cognate object, whose semantic content is more or less identical to that of the verb. Consider the example in (53).

(53) The hermit lived a quiet life.

Whereas unergative verbs in English allow a cognate object, (54a), unaccusative verbs do not, (54b).12

(54) a. Kermit was singing along a song.
 b. *Her glasses fogged up a fog.

The explanation for the difference in grammaticality between (54a) and (54b) lies in the case properties of unergative and unaccusative verbs (Burzio 1986). Unaccusative verbs do not allow a cognate object, because they are unable to assign structural case. This problem does not arise with unergative verbs, hence unergative verbs do allow cognate objects, cf. (54a).13

English change of state (or position) verbs have an intransitive and a transitive (causative) use. This is known as the causative alternation, illustrated in (55).

(55) The piece of chalk broke. > The pupil broke the piece of chalk.

12 According to McIntyre (2004: 528), the example in (54a) is ungrammatical (cf. his example (7b)). A Google search yields several examples in which *sing along is accompanied by the cognate object a song, however.

13 McIntyre (2004: 556) notes that intransitive cases which nevertheless allow an argument, as in (54a), involve a change in semantics: the presence of the object forces a resultative reading.
Since unaccusative verbs in English often express a change of state, it follows that they can undergo the causative alternation, (56a). Unergative verbs, on the other hand, are normally agentive and therefore do not allow the causative alternation, (56b).

(56) a. Her glasses fogged up. > The heat fogged her glasses up.
b. The parrot looked on. > *The cat looked the parrot on.

The availability of the causative alternation with unaccusative verbs, (56a), follows from the thematic structure of unaccusative verbs (cf. Levin and Rappaport Hovav 1995: 80). They have a patient or theme argument and lack an agent argument. Thus, the event expressed by unaccusative verbs is brought about by an unexpressed agent. When this agent is expressed, the patient or theme remains in object position. Not all unaccusative verbs participate in the causative alternation, however, e.g. The applause died down > *The presenter died down the applause. The alternation is not available for unergatives, cf. (56b), since subjects of unergatives are real agents, which cannot be demoted to object position.

Some resultatives force the presence of a reflexive object, (57).

(57) a. The queen laughed herself crazy.
b. *The queen laughed crazy.

In (57), it is the resultative adjective crazy which selects the reflexive object, given that the verb to laugh is intransitive. The appearance of a reflexive object follows from a condition on resultative predication, formulated in the Direct Object Restriction (DOR) (Levin and Rappaport Hovav 1995: 34).

(58) Direct Object Restriction (DOR)
A resultative phrase may be predicated of the immediately postverbal NP, but may not be predicated of a subject or of an oblique complement.

Thus, when a resultative phrase combines with an intransitive verb, the appearance of a reflexive object is necessary for the resultative predication to be successful. Simpson (1983) was the first to note that the presence of a reflexive object signals that the verb is unergative (Levin and Rappaport Hovav 1995: 34). Unergative verbs do not have an internal argument that a resultative phrase can predicate over, hence a reflexive object appears (cf. DOR). Unaccusative verbs, on the other hand, have an internal argument which is promoted, so no reflexive object is required when a resultative phrase is present.

This test can be applied to resultative VPCs. Consider the examples in (59).

(59) a. Squealer psyched *(himself) up for his important speech.
 She ran *(herself) down completely with partying every day.
b. My brother will never grow *(himself) up.
 He thinned *(himself) down after changing his lifestyle.
The examples in (59a) require the presence of a reflexive object, which indicates that the verbs are unergative. The VPCs in (59b) are unaccusative, as is evident from the fact that a reflexive object is not allowed. We may conclude, then, that all resultative VPCs without reflexive objects are unaccusative.\footnote{Cf. Spencer and Zaretskaya (1998: 23), who point out that English resultatives cannot occur with unergative verbs, since resultatives cannot predicate over an external argument. Note that unergative verbs do occur in resultatives and VPCs with unselected objects, e.g. He slept his way to the top, She cheated up the footballer.}

Unaccusative verbs allow \textit{there}-insertion, (60a), unlike unergatives, (60b).

(60) a. There fell (down) a wall (down) in our house.
 b. *There looked (on) a parrot (on).

Again, the agentive role of the external argument of unergatives blocks demotion to object position. Not all unaccusative verbs allow \textit{there}-insertion. It works especially well with verbs of appearance (e.g. \textit{arise}) and existence (e.g. \textit{exist}) (cf. Levin and Rappaport Hovav 1995: 149).

The differences in argument structure of VPCs indicate that VPCs can not all be assigned the same syntactic structure. This is captured by Chomsky’s (1995a) framework, by the assumption that the external argument is introduced by the verbal head v and is therefore not present in the structure of unaccusative verbs, since they lack an external argument.

1.5.2 Argument sharing

A well-known property of complex predicate constructions is that they involve argument sharing. Thus, in secondary predicate constructions, there are two predicates which share one argument, (61).

(61) Dad ate the fridge empty.

The direct object the fridge in (61) is an argument of the verb and the secondary predicate empty. VPCs are also complex predicates in the sense that there are two predicates which express a complex event and also involve argument sharing.

(62) The road hog slowed down his bicycle.

The object his bicycle in (62) is the shared argument of the verb and the particle. Both the verb \textit{to slow}, which denotes an activity, and the particle \textit{down}, which expresses the endstate, affect the object his bicycle.
1.5.3 Unselected objects

Particles seem to have the ability to alter the argument structure of the verb they combine with, witness examples such as (63).

(63) The car ran down the garden gnome.

The presence of the direct object the garden gnome is unexpected given the intransitivity of the simplex verb to run ‘go quickly’. Since the verb does not select an internal argument, we conclude that it is the particle that licenses the direct object. This is supported by cases in which the simplex verb and the VPC are both transitive, but occur with different objects, as in (64) (from Los 2004: 85, her example (2)).

(64) a. He bought a house
b. He bought out the shareholders.

The claim that unselected objects are selected by the particle is further supported by the fact that resultative phrases (i.e. the particle) must be predicated of a direct object. The subject-predicate relation is confirmed by the possibility of paraphrasing the direct object and the particle making use of the copula be: ‘The garden gnome is down’. This indicates that the direct object is the external argument of the particle.

The status of unselected objects is not entirely undisputed. Levin and Rappaport Hovav (1995) (henceforth L&RH) argue that unselected objects are not genuine arguments. They do so on the basis of the fact that unselected objects fail three argumenthood tests (put forward by Carrier and Randall 1992, henceforth C&R), the nominalisation test, (64a), the adjective-passive test, (64b), and the middle-formation test, (64c).

(64) a. Nominalisation
 the painting of the door red
 *the drinking of the pub dry
b. Adjective-passive
 the wiped-clean table (L&RH 1995: 43, ex.(27a))
 *a drunk-dry teapot (L&RH 1995: 43, ex.(27b), from C&R 1992, their example (73c))
c. Middle-formation
 this metal pounds flat easily (L&RH 1995: 43, ex.(26a))
 *this type of pavement runs thin easily (L&RH 1995: 43, ex.(26b), from C&R 1992, their example (69a))

Alternatively, it could be argued that it is the entire VPC that selects the argument. This is in line with an analysis in which the verb and the particle are a morphological object and listed as a single lexical item in the lexicon. I reject such a view on the basis of the difficulties it has in accounting for the syntactic properties of VPCs.
Spencer and Zaretskaya (1998: 9) show that these tests are not completely reliable. With respect to the nominalisation test, they suggest that the unacceptability of nominalisations involving unselected objects is stylistic. They note that the use of unselected objects is generally restricted to the conversational register, and that the use of -ing nominalisations normally does not appear in that register. Moreover, grammaticality slightly improves when the resultative predicate is placed in front of the unselected object and immediately adjacent to the verb, as in (65) (from Spencer and Zaretskaya 1998: 9, their example (29)).

(65) ?the drinking dry of the pub

As Spencer and Zaretskaya (1998: 9) point out, this is reminiscent of VPCs, which only allow nominalisation in the order V–Prt–NP: the looking up of the information versus *the looking of the information up.16 They further note that adjectival passive formation with unergative resultative predicates yields better results when other word orders are allowed. This is illustrated by the example in (66), which is grammatical (from Spencer and Zaretskaya 1998: 10, their example (31)).

(66) The pub, drunk dry by an entire football team, looked a sorry place.

Such relaxation of the word order is not even required for VPCs with unselected objects, as is shown by the grammaticality of cases like a written-off car, the looked-up information, the dug-up bone. Spencer and Zaretskaya (1998: 10) also mention Goldberg’s (1995) point that the middle-formation test is not very reliable, since middle formation is highly restricted in English. At the same time, some VPCs with unselected objects do in fact allow middle formation, e.g. That plant digs up easily. The facts presented here prove wrong L&RH’s (1995) claim that unselected objects are not arguments.

An analysis treating unselected objects as arguments yields a case problem. It is not clear how they should receive case, given that the intransitive verb does not have structural case to assign and given that particles are not case assigners. Zeller (2001: 218-225) proposes that the verb can inherit the case assignment property of P, because it is structurally adjacent to P. The particle has to transfer this property to the verb, because it cannot assign case itself due to the lack of functional structure. Zeller assumes that particles have the case assigning property because they are related to prepositions, which are case assigners.

A special type of VPC in which the particle triggers the presence of an argument is the so-called ‘time-away’ construction (Jackendoff 1997, 2002), (67).

(67) a. *Pam wrote the afternoon.
 b. Pam wrote the afternoon away.

16 Spencer and Zaretskaya (1998: 10) observe that the non-transparent meaning of many English VPCs makes it difficult to determine whether an unselected object is involved. This is easier with transparent VPCs, such as Fido dug a bone up versus *Fido dug a bone (Spencer and Zaretskaya 1998: 10, their example (33)).
The pair in (67) indicates that the particle away selects the argument the afternoon. On its own, the verb to write does not allow the object the afternoon, (67a), but the presence of the particle away allows a direct object, (67b). Interestingly, the particle away only licenses arguments that expresses a period of time (e.g. the afternoon), given the ungrammaticality of *Pam wrote the love letter away (versus Pam wrote the love letter).

1.5.4 Argument blocking

The discussion so far has focused on resultative particles, which select an (external) argument. English also has a set of particles (on, along, away) which express duration rather than a result. Durative particles seem to block the argument of the verb they combine with. The examples in (68) are taken from Dehé, Jackendoff, McIntyre and Urban (2002: 14), their example (19).

(68) a. fight (*battles/enemies) on, eat (*salad) on
 b. type (*the essay) away, chew (*the food) away

The argument of the simplex verb is blocked by the presence of the particle. Durative particles highlight the time span of the activity expressed by the verb, rather than the entity that is affected by the activity. This also explains why arguments expressing a period of time are allowed, as these fit in with the temporal semantics of the particle. The time-away construction (cf. (67)) is an example of this. The presence of an object would create a telic event and thus would trigger a resultative interpretation.

1.6 Verb-particle combinations and first language acquisition

In her study on first language acquisition, Clark (1993: 28) notes that particles with a transparent meaning (i.e. expressing space and motion) belong to the set of early words that children acquire. This is in line with the three important factors in acquisition she mentions, namely transparency of meaning, simplicity of form and productivity (Clark 1993: 15). At first, children make use of particles without any accompanying verb. The data presented by Clark provide evidence for an analysis in which particles are analysed as predicates. At a later stage in the acquisition process, children begin to combine the particles with verbs. The first verbs they put to use in VPCs are light verbs (such as do, make, go, get), i.e. general-purpose verbs which express an activity or action (Clark 1993: 29-30). Later on, more specific verbs are added to the inventory. At an even later stage, children acquire VPCs with a non-transparent meaning, which are not productive and have to be listed.

1.7 Conclusions and outlook

The intricate characteristics of English VPCs presented in this chapter provide a real challenge to analyses of the construction. The prime concern is to account for the ambiguous behaviour of VPCs. Particles act as independent elements in that they are
separable from the verb, but at the same time seem to form a unit with the verb when they cannot be separated, when the VPC has a non-transparent meaning and a unique argument structure. The ambivalent nature of English VPCs not only raises questions about their structural status (i.e. whether they are words or phrases), their puzzle also bears upon general linguistic issues such as the boundary between syntax and morphology.

The rich array of VPC meanings, which may vary on a scale from transparent to completely non-transparent, must not be neglected. There is a mismatch between the syntax and semantics of English VPCs, in that non-transparent VPCs have the same syntactic possibilities as transparent VPCs (an exception is topicalisation, which involves a semantic-prosodic condition). Moreover, resultative and non-resultative VPCs show distinct argument structures, which must be reflected in the syntax.

These and other issues will dealt with in the light of existing analyses in Chapter 2.
2 The Present-Day English verb-particle combination in the literature

The syntactic, morphological and semantic characteristics of Present-Day English verb-particle combinations (VPCs) discussed in Chapter 1 provide a challenge for any linguist attempting an explanatory account of Present-Day English VPCs. They show word-like as well as phrasal characteristics and their meaning varies from transparent to idiomatic. The separability of the verb and the particle convincingly shows that the particle is an independent syntactic element, (1).

(1) a. The nosy neighbour dug all the details up.
 b. The brokenhearted teenager tore the letter right up.

Other evidence suggests that VPCs form a unit, (2).

(2) a. Mum drank up the vodka, and dad __ the whisky.
 b. The cheerleaders comforted the disappointed runners-up.
 c. He washed down the entire house.

The example in (2a) shows that the particle is gapped together with the verb, indicating that they form a unit. The noun formed from a VPC in (2b) shows that VPCs can participate in word formation processes. The meaning of the example in (2c) cannot be inferred from the meaning of the VPC’s parts, suggesting that the verb and the particle are lexically listed as a single lexical item.

Apart from their paradoxical status, the word order alternation of Present-Day English VPCs is another thorny issue, (3).

(3) The blustery wind messed up her new hairdo.
 The blustery wind messed her new hairdo up.

The alternation illustrated in (3) occurs with the bulk of English VPCs, some idiomatic VPCs which have become fixed expressions being the notable exception. Interestingly, there is no clear semantic difference between the two word orders, which suggests that the choice between the two orders is completely optional.

To make matters more complicated, the word order alternation is not available when the object is pronominal, as shown by the examples in (4a,b), unless the pronominal object receives stress, (4c).

(4) a. Alf knocked (it) over (*it).
 b. SuperGrover dropped (her) down (*her).
 c. SuperGrover dropped down HER, not HIM.
It is clear from the discussion of the characteristics of Present-Day English VPCs in Chapter 1, that some of their characteristics seem to defy analysis. This chapter critically reviews the analyses of Present-Day English VPCs that have been put forward in the literature.

The chapter is organised as follows: §2.1 discusses morphological analyses of the Present-Day English verb-particle combination, which treat VPCs as morphological words. In §2.2, various syntactic analyses are reviewed, in which the verb and the particle are treated as separate syntactic elements. The syntactic analyses discussed are complex predicate analyses, §2.2.1, several small clause analyses, §2.2.2, Split VP analyses, §2.2.3, as well as several other analyses, §2.2.4. In §2.3, I provide a summary of the analyses reviewed and present the conclusions.

2.1 Morphological analyses of Present-Day English verb-particle combinations

2.1.1 Johnson (1991)

Johnson (1991) proposes that Present-Day English VPCs are complex verbs formed in the lexicon, evidence for which comes from the word-like properties of VPCs. In Johnson’s analysis, the verb and the particle, which constitute a complex verb, are one lexical item \([v \ V \ Prt]\). The object of transitive VPCs is generated in the complement position of the complex verb as an internal argument, as indicated in the partial structural representation in (5) (taken from Johnson 1991: 600, his example (58)).

\[
\begin{align*}
V' \\
V \quad \text{NP} \\
V \quad \text{up the reference} \\
\text{look}
\end{align*}
\]

The first problem of Johnson’s analysis concerns the assumption that the VPC is a morphological word. The structure of the VPC violates the Right-hand Head Rule (Williams 1981), since the verb (the head of the morphological word) is on the left rather than on the right (cf. also Ramchand and Svenonius 2002: 105).

A disadvantage of Johnson’s analysis is that it does not capture the predicative nature of Present-Day English particles. The discussion of the properties of Present-Day English particles in Chapter 1 shows that they function as predicates. They predicate over the direct object, which is understood as the subject of the predicative particle. As the structural representation in (5) shows, the morphological analysis does not reflect this intrinsic property of particles.
A possible advantage of Johnson’s analysis is that unselected object facts, (6a), and argument blocking facts, (6b), can be said to follow from the argument structure of the lexical item (i.e. the verb-particle combination), schematised in (7).

(6) a. The manager laughed off the speculations.
 *The manager laughed the speculations.
 b. The imperturbable novelist was typing away.
 *The imperturbable novelist was typing (the novel) away (the novel).

(7) a. [v laugh off] : [V NP]
 b. [v type away] : [V]

The VPC laugh off in the example in (6a) is transitive, which contrasts with subcategorisation frame of the simplex verb laugh, which does not contain an internal argument. In a morphological analysis of VPCs, in which the verb and the particle form a complex verb, this difference follows from the fact that laugh and laugh up are two distinct lexical items, each with their own subcategorisation frames. In (6b), The opposite is the case with type away, where the presence of the particle blocks the presence of an internal argument. In a morphological analysis of VPCs, this can again be said to follow from the subcategorisation frame of the VPC.

Johnson proposes that English verbs move to the head of a functional projection on top of VP, which he calls µP.1 He proposes that VPCs, which he generates in a single position, are also able to move to µ on the basis of the coordination facts in (8) (taken from Johnson 1991: 592, his example (38)).

(8) a. Betsy looked up the address quickly and the phone number slowly.
 b. Liz turned out the porch light today and the living room light yesterday.

The headless coordinating VPs in (8) indicate that the verb-particle combination (under one V-node) can move to the functional projection µ. This is illustrated in (9) (taken from Johnson 1991: 600, his example (59)).

1 This is a mere assumption, as pointed out by Johnson: “One question […] for which I will not provide an answer is where the verb moves to and why it moves there. Although I believe plausible answers to these questions can be found, I will not address this aspect to the problem directly and assume that there is a functional head, µ, to which the verb must adjoin” (Johnson 1991: 585).
Johnson goes on to propose that “Head Movement also appears able to move the verbal portion alone” (Johnson 1991: 601). This means that the movement to μ can, but does not always, involve the particle, (10) (taken from Johnson 1991: 601, his example (61)).

According to Johnson (1991: 601–602), no optionality at S-structure is involved here. Rather, whether or not the particle moves is said to be related to the properties of the position moved to. Thus, it is assumed that a position hosting verbal morphology does not allow a particle to occupy it. Johnson assumes that T, a functional projection higher than μ, is such a position. With all this in place, the optionality apparently remains, because “the particle must be stranded either in μ or in its D-structure position” (Johnson 1991: 604); cf. (9) and (10).

His argument for movement of the verb away from the particle is based on Dutch examples in which the particle is stranded by Verb Raising, as in (11) (taken from Johnson 1991: 601, his example (60)).

Johnson assumes that English has “the same range of options” (Johnson 1991: 601), which supports the analysis proposed in (9). It is not clear why this should be the case, however, given the differences between the English and Dutch particle systems (cf. Blom 2005).
Beside the motivation for the extraction of the verb, the operation itself is equally problematic. Johnson proposes that “the verb and the particle are inserted at D-structure in a single position and are separated syntactically” (Johnson 1991: 599). This violates the principle of Lexical Integrity, which states that the internal structure of a word cannot be affected by syntactic processes (cf. for example DiSciullo and Williams 1987).2

Johnson’s analysis links the word order alternation of Present-Day English VPCs to case assignment (1991: 595) and adopts Holmberg’s (1986) and Vikner’s (1990) account of Object Shift in the Scandinavian languages. Object Shift is described as “A-movement that relocates a structurally Case-marked NP just when the verb assigning Case to that NP has been moved” (Johnson 1991: 604). Johnson argues that Object Shift can account for the word order alternation found with Present-Day English VPCs. When the object is a full NP, Object Shift is optional, given that it is contingent on case-assignment (Holmberg 1986), which Johnson assumes can occur anywhere in the process of derivation. Structural case is assigned either before or after the verb has moved out of the VP. When case is assigned after verb movement, the NP moves to SpecVP, yielding the order V–NP–Prt. When case-assignment takes place before the verb has moved, the NP stays in situ. Johnson further points out that pronominal NPs obligatorily undergo Object Shift, which he suggests results from “particularities of the environment in which these cases of A-movement occur” (Johnson 1991: 606), but offers no real explanation of why case assignment apparently always takes place after verb movement, so that the pronominal object moves to SpecVP.

In conclusion, there are two major problems with Johnson’s (1991) analysis. The first is that its analysis of VPCs as a morphological word violates the Right-hand Head Rule. The second is that its account of the separability facts involves a violation of the principle of Lexical Integrity (DiSciullo and Williams 1987 among others). A further disadvantage is that it has little to say about the semantics of VPCs. It is not clear, for example, how the analysis accounts for the predicative nature of Present-Day English particles. Moreover, given the productive formation of new VPCs, its analysis of VPCs as single lexical items requires the assumption that they can be (lexically or syntactically) constructed (cf. Ramchand and Svenonius 2002: 102).

2.1.2 Dehé (2002)

Dehé’s (2002) study of English VPCs investigates the role of information structure in the choice between the two word orders. She begins by showing that the order V–Prt–NP, which she calls the continuous order (Dehé 2002: 3), is the underlying order. Apart from aducing arguments in favour of this claim from the literature, such as frequency of occurrence, and “the syntactic behaviour of VPCs in morphological processes and syntactic constructions such as nominalisation, wh-extraction, and complex objects” (Dehé 2002: 84), she presents the results of a speech production experiment she performed. This experiment shows that the continuous order is produced considerably more frequently (in a context-
free experimental situation), which Dehé takes as evidence for the claim that the continuous order is the neutral (i.e. underlying) one. The underlying structure Dehé assumes for English VPCs is presented in (12) (from Dehé 2002: 240, her example (57)).

\[
\begin{array}{c}
\text{v} \\
\downarrow \\
\text{AgrOP} \\
\downarrow \\
\text{AgrO} \\
\downarrow \\
\text{VP} \\
\downarrow \\
\text{V} \\
\downarrow \\
\text{Prt} \\
\downarrow \\
\text{DP} \\
\end{array}
\]

\[
\begin{array}{c}
\text{the phone} \\
\text{the job} \\
\text{put away} \\
\text{give up} \\
\end{array}
\]

In Dehé's analysis, the particle and the verb enter the syntax as a complex verb, which takes the object as its complement. The derivation of the V–Prt–Obj order involves movement of the complex verb to Agr, where the verb picks up agreement features, and on to v. The DP object moves to SpecAgrOP where it is assigned case by v.

Dehé shows that the choice between the two word orders is “highly influenced if not determined by the focus background structure of the sentence in which the relevant construction is embedded” (Dehé 2002: 201). Earlier accounts of the word order alternation of English VPCs (cf. Fraser 1976; Svenonius 1996a) already highlighted the influence of the stress pattern on the choice of word order. In the order V–Prt–DP, the DP object receives stress, and in the order V–DP–Prt it is the particle that is stressed. Dehé shows that there is a relationship between the focus-background structure of a sentence and the news value of the direct object. Objects containing old (i.e. given) information are background constituents, whereas objects referring to new information occur in the focus domain (i.e. the end of the clause in English, where they receive endfocus). In syntax, this translates to V–DP–Prt order when the entity denoted by the object is given and to V–Prt–DP order when the object refers to a new entity.

The focus background structure is syntactically represented by a focus feature, which triggers movement operations. Each sentence has a different focus domain which leads to different derivations. The focus domain of a sentence with maximal focus is the entire sentence, for example, (13) (from Dehé 2002: 241, her example (60)).
In a sentence with maximal focus there is no need for the object to be placed between the verb and the particle, because the object is a focus constituent. The resulting order is the continuous order V–Prt–DP. Likewise, non-minimal focus (focus domain is VP) and minimal focus (focus domain is DP) result in the continuous order, provided the object is a focus constituent.

A sentence with a background DP as object has the VP as focus domain, because the verb has focus. The DP object, though it resides inside the VP, is not part of the focus domain, because it is specified as [–F]. Dehé postulates a condition on focus domains which states that a mismatch in focus features in the focus domain is only allowed when the [+F] feature is bound by overt phonological realisation (Dehé 2002: 244–245). Thus, when the complex verb and the DP object leave the VP (which happens in the continuous order derivation), this condition is violated, since the VP (the focus domain) is left with two traces which have different focus feature specifications. The solution is to move the verb, rather than the entire complex verb, out of the VP, (14), (from Dehé 2002: 245, her example (66)).
As a result of the verb movement, the particle is stranded. The condition on focus domains is now satisfied by the presence of the particle inside the VP (i.e. the focus domain). The particle binds the [+F] feature and receives stress. Dehé points out that extraction of the verb out of the complex verb is a costly operation, because it involves an additional movement operation. It is only resorted to when needed to save a derivation, as in (14).

Dehé’s (2002) analysis faces the same problem with Lexical Integrity as Johnson’s (1991) proposal. Dehé accommodates this by adopting a multi-levelled head structure (following Ishikawa 1999). The structure of a verb is assumed to consist of three levels, as indicated in (15) (adapted from Dehé 2002: 251, (76) and (78)).

The three levels V₀₀, V₀₁ and V₀₂ represent two domains, A and B. Domain A (under V₀₁) is the domain where morphological rules apply. This explains why prefixes, which are located in this domain, cannot be separated from the verb: syntactic operations do not apply in domain A. Domain B (over domain A and under V₀₂) is the domain in which morphological as well as syntactic rules may apply. This is the domain where particles are located. Particles are therefore subject to syntactic rules, allowing it to be separated from the verb.

The restricted position of pronominal objects falls out of Dehé’s (2002) information structural account straightforwardly. Since pronouns are elements that refer back to an earlier mentioned entity (old information), they qualify as background elements. As such, they are specified as [-F] and therefore must leave the focus domain in order to prevent a mismatch of focus features (the focus domain being specified as [+F]). The particle, specified as [+F] is stranded in the focus domain, matching the [+F] feature. The resulting order is V–PronObj–Prt.
Dehé’s analysis is an important contribution to the observation previously made that there is an information structural difference between the two word orders of Present-Day English VPCs. Her speech production experiments confirm this observation, which means that the word order alternation, though perhaps syntactically completely optional, is not optional pragmatically. Her structural analysis of Present-Day English VPCs does not capture the semantics of VPCs and her analysis of VPCs as lexical units requires an adaptation of the notion of Lexical Integrity.

2.1.3 Conclusion

The morphological word analyses of VPCs proposed by Johnson (1991) and Dehé (2002) both face the same problems. The first problem concerns the derivation of the order in which the particle occurs separated from the verb. The separability of VPCs forces morphological analyses to assume that parts of the VPC (the verb or the particle) can be targeted by a syntactic movement operation. The problem with this is that it is a violation of Lexical Integrity, which states that the internal structure of a word cannot be affected by syntactic processes. Johnson simply ignores this issue, while Dehé adapts the principle of Lexical Integrity by assuming that a word consists of two domains, one of which can be affected by morphological as well as syntactic operations.3

2.2 Syntactic analyses of Present-Day English verb-particle combinations

2.2.1 Complex predicate analyses

2.2.1.1 Neeleman (1994, 2002)

In Neeleman’s (1994) study on Dutch and English VPCs, Present-Day English VPCs are analysed as complex verbs. As opposed to Johnson’s (1991) morphological analysis, VPCs are syntactic constructs, which take the DP object as their complement, (16) (from Neeleman 1994: 178), his example (9b).

\[
(16) \quad V' \\
\downarrow \\
V \quad DP \\
\downarrow \\
V \quad Pred
\]

3 Stiebels and Wunderlich (1994), who also assume that VPCs are formed lexically, circumvent the Lexical Integrity problem by stipulating a lexical feature [+max], which forces syntactic visibility of the particle throughout all morphological operations (see Blom 2005 for discussion).
As indicated by the structure in (16), Neeleman analyses the particle as a non-verbal predicate (Pred) and the VPC as a complex predicate. The alternative word order, V–Obj–Prt, is derived by particle extraction from the complex verb. This is illustrated in (17).

\[
(17) \quad V' \quad Pred, \\
V' \quad V \quad DP \\
V \quad t_i
\]

Note that extraction of the particle, indicated in (17), does not violate the principle of Lexical Integrity, since the complex predicate is a syntactic construct, not a morphological word. Neeleman argues that the motivation for particle extraction has to do with case assignment requirements. The verb can only assign case to the object DP when it is adjacent to it. In the underlying configuration, (16), the particle intervenes and is forced to move to establish adjacency between the verb and the object, yielding the order V–Obj–Prt.

The movement of the particle cannot be obligatory, however, given that the two VPC word orders are optional. Neeleman indeed proposes that particle extraction is optional and argues that its optionality is related to the structure of English particles. He proposes that English particles optionally project a phrase. Neeleman assumes that only XPs interrupt adjacency (Neeleman 1994: 184), so that the particle is forced to move when it projects a phrase. A particle that does not project a phrase does not interrupt adjacency and therefore stays in situ, yielding the order V–Prt–Obj. No mention is made of pronominal objects, which do not show the word order alternation. This could presumably be accounted for by assuming pronominal objects never project a phrase.

Neeleman’s (1994) analysis captures the syntactic independence of English particles on the one hand (when it projects a phrase it moves) and their syntactic dependence on the other hand (when it does not project it stays in the complex predicate configuration). The motivation for projection or non-projection, as well as that for particle extraction when it projects a phrase, is case-related. The word order alternation is taken to follow from case-requirements, rather than from a distinct syntax of VPCs.

In a more recent account, Neeleman (2002) reformulates the case adjacency requirement to mean that case checking must take place inside one and the same phrase, which can be syntactic or prosodic. The verb and the object are shown to be in the same checking domain when the particle does not project, making case assignment possible. This is illustrated in (18), where the square brackets represent syntactic phrase boundaries and the curly brackets prosodic boundaries (from Neeleman 2002: 153, his example (28)).

\[
(18) \quad [vV [v V Prt] DP] \\
{V Prt DP}
\]
As the curly brackets in (18) show, the verb and the object are in the same prosodic domain and case-assignment can take place.

When the particle projects a phrase, however, the verb and the object are not in the same phrase, neither syntactically nor prosodically, (19b) (from Neeleman 2002: 153, his example (29)).

(19) a. He messed up the assignment.
 b. \[VP [v V PrtP] DP]
 * { V PrtP } { DP }

As shown by the syntactic and prosodic configurations in (19b), case cannot be assigned, because the verb and the object are in different phrases. In order to make case assignment possible, Neeleman (2002) proposes a structure in which the object is merged in SpecVP and in which the verb moves to a higher position (creating a VP-shell), (20) (from Neeleman 2002: 153, his example (30)).

(20) \[V' V [VP DP [v tv PrtP]] \]
 { V DP } { tv PrtP }

After verb movement, the verb is in a position to assign case to the object in SpecVP (note that the verb and the object are now in the same prosodic phrase).

Although Neeleman’s (2002) analysis still involves optional projection of the particle (cf. Neeleman 1994), this is no longer employed as a means to derive the two word orders. A disappointing consequence of this is that it no longer links the structural status of English particles to their syntactic distribution. In Neeleman (2002), particles stay in situ whether they project or not, and the optional projection of particles seems completely arbitrary.

2.2.1.2 Conclusion

The difference between a complex predicate analysis like Neeleman’s (1994, 2002) and a morphological analysis like Johnson’s (1991), is that the verb and the particle are not seen as a morphological word in complex predicate analyses, even though both types of analyses treat the verb and the particle as a constituent. Though capturing the intuition that the verb and the particle form a unit and are separable at the same time, the complex predicate analysis proposed by Neeleman (1994, 2002) has as a disadvantage that the word order alternation of VPCs is derived by unmotivated case-licensing mechanisms.

2.2.2 Small clause analyses of Present-Day English verb-particle combinations

Small clause analyses of Present-Day English verb-particle combinations owe much to Hoekstra’s (1988) work on small clauses (cf. also Stowell 1983; Hockstra and Mulder 1990). A small clause consists of a subject and a nonverbal predicate. Hockstra shows similarities between resultative constructions and VPCs and adopts a small clause structure for both.
An example of a resultative construction and a VPC, including their small clause structure, is given in (21).

(21) a. The woodpecker drove [SC [NP subject the monkey] [AP predicate crazy]].
 b. The monkey threw [SC [NP subject the woodpecker] [PP predicate out]].

The small clause in (21a) consists of an AP predicate *crazy* and a NP subject *the monkey*. The predicate typically expresses a result (*crazy*) which affects the subject of the small clause (*the monkey*). In (21b), the particle *out* is the predicate of the small clause and it takes the NP *the woodpecker* as its subject. Like the AP predicate in (21a), the particle expresses a result.

Despite this semantic similarity between VPCs and resultative constructions involving an adjective phrase, the syntactic distribution of these two constructions is not the same. Thus, the word order alternation typical of VPCs is not possible with resultative APs, (22).

(22) *The woodpecker drove crazy the monkey.*

This difference in syntactic distribution has been offered as evidence against a small clause structure of VPCs.

Although it has been claimed that only transparent VPCs allow a small clause analysis (e.g. Wurmbrand 2000; Dehé 2002), non-transparent VPCs can in fact be treated as small clauses too.

(23) The monkey shut [SC [NP subject the woodpecker] [PP predicate up]].

In this example, the particle *up* has a non-transparent, aspectual meaning. The particle denotes the endresult of the event and can clearly be analysed as a secondary predicate in a small clause configuration as indicated in (23).

The small clause structure captures the intuition that particles function as predicates, taking an external argument. The assumption that particles select an external argument is confirmed by observations concerning the Figure/Ground distinction (cf. for example Svenonius 2002a,b) as discussed in Chapter 1 (see also §2.2.3).

2.2.2.1 Kayne (1985)

Kayne (1985) is one of the first to propose a small clause analysis for Present-Day English VPCs. Apart from the similarities between VPCs and resultative constructions, Kayne provides further evidence for assigning VPCs a small clause structure. He points out the lack of a derived nominal counterpart for typical small clause constructions and VPCs, (24) (from Kayne 1985: 102, his examples (6) and (7)).

(24) a. *John’s consideration of Bill honest.*
 b. *The looking of the information up took a long time.*
Kayne argues that the ungrammaticality of (24b) proves that the V–NP–Prt pattern is an instance of a small clause structure, given the ungrammaticality of the nominal derived from a small clause structure in (24a). Moreover, it is impossible to extract from the postverbal NP of both small clauses and VPCs, (25) (from Kayne 1985: 103, his examples (8), (9), (10) and (11)).

(25) a. The cold weather has gotten John’s sister quite depressed.
 a’. *Who has the cold weather gotten the sister of quite depressed?
 b. The cold weather has worn John’s sister out.
 b’. *Who has the cold weather worn the sister of out?

Kayne points out that the small clause order in (25a), i.e. \([SC \ [NP \ \text{John’s sister}] \ [AP \ \text{quite depressed}]\]), bars extraction in (25a’). The ungrammaticality of (25b’), then, suggests that example (25b) too involves a small clause structure, i.e. \([SC \ [NP \ \text{John’s sister}] \ [PrtP \ \text{out}]\]. Kayne further notes the meaning of VPCs, which is predominantly resultative, just like that of small clause constructions, (26) (from Kayne 1985: 121), his examples (103) and (102).

(26) a. John made Bill unhappy.
 b. John turned the radio off.

In both examples, the predicate of the small clause, \textit{unhappy} and \textit{off} respectively, express a resulting state. Importantly, Kayne notes that “the postverbal NP is much more naturally interpreted as subject of the particle than as object of V” (Kayne 1985: 121). This supports a small clause analysis, in which the object is generated as an external argument of the particle, rather than as an object of the verb.

Kayne (1985) assumes that V–NP–Prt is the underlying order, (27a), and argues that the alternative order V–Prt–NP, (27b), is the result of object extraposition, i.e. rightward movement (examples are mine).

(27) a. The cook spat the hot potato out.
 b. The cook spat out the hot potato.

Kayne considers object extraposition, which derives the order in (27b), to be parallel to heavy NP shift, which involves the extraposition of a prosodically long object, (28c) (examples are mine).

(28) a. The appalled Scot returned \textit{the haggis} to the cook.
 b. *The appalled Scot returned to the cook \textit{the haggis}.
 c. The appalled Scot returned to the cook \textit{the entire plate of badly cooked haggis}.

In (28c), the heavy NP \textit{the entire plate of badly cooked haggis} has been moved to the end of the clause. The example in (28b) shows that this is only possible with heavy objects.
In his discussion of Kayne (1985), Den Dikken (1995) points out that rightward movement of a DP is not the same as heavy NP shift, which means that the order V–Prt–NP cannot be the result of object extraposition. Unlike heavy NPs, objects of VPCs cannot be extraposed to the right edge of the sentence, (29a’). This is also true for non-heavy NPs, (29b’) (examples are mine).

(29) a. The cook spat out the hot potato with a yell.
 a’. *The cook spat out with a yell the hot potato.
 b. The tourists watched the bagpipers with delight.
 b’. *The tourists watched with delight the bagpipers.

Den Dikken also points out that there is no adjunction site for the extraposed object on the assumption that maximal projections can only adjoin to other maximal projections that are not arguments (cf. Chomsky 1986). If the PP in the examples in (29) is adjoined to VP, the only maximal projection that is left for the DP object to adjoin to is the small clause. This adjunction is not allowed, however, since the small clause is an argument of the verb.

Regardless of the status of object extraposition in Kayne’s (1985) analysis, the fact that it involves rightward movement is problematic following Kayne’s (1994) proposal for an anti-symmetric approach to syntactic structure. According to this approach, the universal underlying order is Specifier–Head–Complement and all rightward movement is barred. As a consequence, Kayne’s (1985) proposal that the V–Prt–NP order is derived via object extraposition is undesirable.

Kayne (1985) argues that the position of pronominal objects follows from a prohibition on the extraposition of pronominal objects. According to Kayne, this prohibition is due to a condition on extraposition which requires the extraposing element to be of some weight. Pronouns are light elements and are therefore not allowed to extrapose (Kayne 1985: 127).

In conclusion, Kayne’s (1985) analysis capitalises on the observation that Present-Day English particles function as secondary predicates, but the technical details of the account are problematic in light of recent theoretical developments (Kayne 1994, Chomsky 1995a).

2.2.2.2 Guéron (1990)

Like Kayne (1985), Guéron (1990) analyses particles as predicates, but she proposes a different type of small clause. In Kayne’s (1985) analysis, particles head a small clause of the form [SC NP Prt], which Guéron (1990: 155) calls a predicative small clause. Guéron assumes that particles project a so-called unaccusative small clause, which is of the form [SC Prt NP], (Guéron 1990: 155), (30) (cf. Den Dikken 1995).

(30) The candidate wiped the sweat [SC NP Prt] off t.

Guéron further assumes that the alternative order is derived by raising of the object, as illustrated in (30). As already pointed out above, however, a structure in which the VPC’s object is the complement of the particle is not a correct representation of the facts. Particles
select an external argument rather than an internal argument (cf. Figure; Svenonius 2002a,b; to appear, Ramchand and Svenonius 2002). In the structure that Guéron proposes, however, the particle has a complement, which then raises out of the PrtP (i.e. the small clause); cf. Den Dikken (1995). As Svenonius (to appear) shows, only prepositions have a filled complement position (Ground), whereas particles have an external argument (Figure).

Guéron analyses particles (and prepositions) as functional categories with inherent locative content. Because they are functional, they do not have an extra functional layer on top of their own projection. Guéron assumes that particles must be governed by the verb in order to be construed as lexical. The verb, when it governs the particle, T-marks it in S-structure. T-marking is a type of L-marking (Chomsky 1986) which lifts the barrier status of the PrtP, as a result of which a chain can be established between the verb and the particle, (31) (from Guéron 1990: 161, her example (44)).

(31) a. We brought up the package.
 b.
 \[T \]
 \[\]
 T
 \[T_{1} \]
 \[V \]
 brought
 \[T' \]
 \[TP \]
 \[V\]
 \[+T \]
 \[T' \]
 \[T_{2} \]
 PrtP
 \[Prt \]
 up
 \[NP \]
 \[the package \]
 \[[+LOC] \]

As the structure in (31) shows, the particle projects an unaccusative small clause (the object of the VPC is generated in the complement position of the particle. The Tense projection on top of the PrtP is licensed by the verb’s T-marking and it “identifies the particle as a verbal category and as a predicate” (Guéron 1990: 160). The chain which is established between the verb and the particle as a result of the T-marking deals with the semantics of VPCs as follows. The particle adds directional semantic content (in addition to its inherent locative content) to an activity verb that denotes movement. Ultimately, the particle “acquires the syntactic and semantic status of a verb” (Guéron 1990: 161) as a result of the T-marking.

Guéron’s proposal limits itself to the structural representation of VPCs and provides no account for the word order alternation of VPCs. This is because the bulk of her essay is concerned with comparing (the status of) particles and prepositions. The syntactic
machinery of the analysis stems from Chomsky’s (1986) Barriers theory, which has since been superseded by the Minimalist program (e.g. Chomsky 1995a).

2.2.2.3 Den Dikken (1995)

(32) \[vp V [sc NP, [pp Prt t]] \]

As the structure in (32) shows, the NP starts out in the complement position of the particle and then moves to the specifier position of the small clause. In Kayne’s (1985) and Hoekstra’s (1988) small clause structures, the NP is base-generated in the specifier of the small clause, since it functions as the small clause’s subject and can therefore be analysed as the external argument of the particle. The structure in (32) is the result of Den Dikken’s (1995) treatment of English particles as ergative (i.e. unaccusative) elements. An ergative, or unaccusative, verb does not assign structural case and does not assign an external theta-role. The surface subject of an unaccusative verb is the understood object. By analogy, if particles are analysed as unaccusative elements, the subject of the small clause originates as the complement of the particle. It then moves to the specifier position of the small clause where it is assigned case by the verb.

The evidence that Den Dikken provides for his claim that particles are ergative (i.e. unaccusative) comes from (idiomatic) VPCs. These VPCs do not show the well-known word order alternation and only appear in the V–Prt–NP order, (33) (taken from Den Dikken 1995: 92).

(33) a. John will bring up the rear.
 b. Many households take in lodgers.

According to Den Dikken, examples such as the ones in (33) follow directly from an analysis in which particles are treated as ergative (i.e. unaccusative) elements.4

Den Dikken notes that the existence of VPCs with a suppressed reference object, such as John kicked the dog out (the door) (Den Dikken 1995: 96), are a potential problem for his analysis. These examples suggest that the NP object can only be the subject of the particle, since the complement position of the particle is already occupied by the reference object.5

4 Note that the example in (33b) does seem to allow the alternative word order, i.e. Many households take lodgers in. Even though this is not the preferred order, it is available, which means that it is not the best of examples.

5 Ramchand and Svenonius (2002) and Svenonius (2004) indeed claim that the reference object (they use the term Ground) is the complement of P.
Den Dikken presents evidence from extraction facts that the reference object in such examples is not in fact a complement of the particle, (34).

(34) a. Which shelf did they put the book on?
b. ⇒Which door did they kick the dog out?

As the example in (34a) shows, English PPs allow extraction out of them. Den Dikken argues that if the reference object the door in John kicked the dog out the door were a complement of the particle, one would expect extraction of the reference object to be possible. Example (34b) shows that this is not the case. Den Dikken concludes that the reference object is not a complement of the particle, which allows him to maintain his analysis of particles as ergative elements, with the NP object generated in their complement position.

Ramchand and Svenonius (2002) point out that Den Dikken’s (1995) treatment of particles as ergative elements “loses the robust generalisations concerning the mapping between syntactic position within the PP and the Figure-Ground distinction” (Ramchand and Svenonius 2002: 389). A good indication that the object of a VPC is not the complement of the particle is the observation that there is a looser constituency between a particle and the Figure (i.e. the VPC’s object, which is the particle’s external argument) compared with that between a preposition and a Ground, which is the preposition’s complement (‘internal argument’) (Svenonius to appear: 21).

(35) a. Miffy watered the flowers (in) the garden (*in).

 Ground

b. Miffy watered (down) the whisky (down).

 Figure

While there is a strict ordering of P and a Ground, (35a), the order of P and a Figure may alternate. This pattern holds cross-linguistically of P and its arguments. This generalisation is lost under Den Dikken’s (1995) account, in which the Figure element is generated in the complement position of the particle.

In Den Dikken’s account, the word order alternation is case-related (cf. Johnson 1991; Haegeman and Guéron 1994; Neeleman 1994, 2002). The idea is that case can be assigned in two different ways, one of which involves case assignment via a chain, which is formed after reanalysis of the particle with the verb. This reanalysis takes place covertly and involves incorporation of the particle into the verb. Den Dikken dismisses overt incorporation of the particle into the verb on several (theoretical and empirical) grounds. First of all, he points out that it violates the Right-hand Head Rule. Secondly, he notes that the stress pattern of VPCs (e.g. brush ’off’) is different from that of English compounds (e.g. ’baby sit’). Thirdly, the final syllable of VPCs (i.e. the particle) is not stressless like English inflections are: push ’in versus ’pushin’ (ing participle). All this indicates that particles are not overtly incorporated into the verb in English (Den Dikken 1995: 89). Rather than overt incorporation, Den Dikken proposes that particles may incorporate covertly (i.e. at LF). The motivation for this movement is case-related: after the particle has been incorporated,
the verb can assign case to the object via a chain. The resulting order after covert particle incorporation is V–Prt–Obj.

The other way in which case can be assigned in Den Dikken’s analysis is by DP movement from the complement position of the particle to the specifier of the small clause, which is a case position (V assigns case to it). Another issue addressed by Den Dikken is that of pronominal objects. Since pronominal objects are only allowed to occur before the particle, the derivation involving covert particle incorporation, yielding V–Prt–Obj, must be excluded for pronominal objects. Den Dikken assumes that (weak) pronouns can only be assigned case when they are in a direct Specifier–Head relationship with a case-assigner. Since there is no such Specifier–Head relationship between the verb and the object in the derivation involving particle reanalysis, this derivation is not available when the object is pronominal. Pronominal objects get case by moving from the complement position of the particle to the specifier position of the small clause, where it receives case from the verb in a Specifier–head configuration.

Den Dikken adds an extra dimension to his analysis in order to account for the optionality of covert particle incorporation (after all, V–Obj–Prt is also possible). He points out that optionality is a problematic notion in the minimalist framework and proposes that particle incorporation is ruled out when there is a functional projection (FP) on top of the particle phrase. The verb may either select a particle phrase with FP on top, or a ‘bare’ particle phrase, i.e. without FP, (36).

\[\begin{array}{c}
\text{(36) } \\
\text{[F subject [F' F [XP predicate]]]} \\
\text{[X subject [X predicate]]}
\end{array} \]

The presence of FP is said to block particle incorporation into the verb, because F counts as an A’ head, and an A-head is not allowed to cross an A’-head by Principle C of the Binding Theory (cf. Chomsky 1986). Den Dikken does not clarify when the verb selects a small clause with a FP. Since the minimalist framework adopted by Den Dikken dictates that the option with the least structure is to be preferred, it is important to know what ‘forces’ the presence of the FP.

In conclusion, I do not agree with Den Dikken’s analysis of Present-Day English particles as unaccusative elements. They are clearly true intransitives, selecting an external argument only. The account of the word order alternation, which is case-related, does not provide insight into the special syntax and syntactic properties of Present-Day English particles. The account of the restricted position of pronominal objects of VPCs is stipulative rather than explanatory.

2.2.2.4 Svenonius (1996a)

Svenonius (1996a) proposes a small clause analysis of Present-Day English VPCs in which the object originates as an external argument of the particle (cf. Kayne 1985; Hoekstra 1988), (37) (taken from Svenonius 1996a: 65, his example (58)).
In the structure in (37), the PredP is the small clause, which contains a subject (*the cat*), a functional head Pred and a predicate head, the particle *out*. The small clause’s subject starts out inside the projection of the particle, PP. It moves to SpecPredP to fulfil the EPP requirements of the small clause. The licensing relation between Pred and the element occupying SpecPredP is comparable to that between *v* and the external argument of a verb in SpecP (cf. Chomsky 1995a). Pred is endowed with a strong N (i.e. EPP) feature, which has to be checked before Spell Out. This is established by movement of the DP subject of the small clause, which is attracted to SpecPredP by Pred’s strong N feature, as indicated in (37). The order thus derived is V–Obj–Prt.

Svenonius derives the alternative order V–Prt–Obj by assuming the particle moves from P to Pred, (38) (taken from Svenonius 1996a: 67, his example (61)).

As the structure in (38) shows, the small clause’s subject remains in SpecPP this time. The derivation suggests that it is the particle that satisfies the EPP requirements by checking Pred’s strong N feature (Svenonius 1996a: 67). This in turn suggests that particles are endowed with a N feature, as argued for by Svenonius (1996b). The particle is thought to bear a N feature when it has an abstract nominal complement incorporated into it. Consider the examples in (39), taken from Svenonius 1996a: 67, his example (62).

Svenonius acknowledges that the optional nature of his particle and object movement is problematic in the light of economy considerations (cf. Chomsky 1995a). He ingeniously shows that neither are in fact optional. Following (a slightly adapted version of) Chomsky’s Minimal Link Condition, which states that the element closest to the target has to move, he argues that the object and the particle are equally close to Pred since they are both inside the PP. This means that they are in fact equally economical. On this account, economy is

The Extended Projection Principle (EPP) requires clauses (including small clauses) to have subjects (cf. Chomsky 1981).

(37) Max [VP smoked [PredP the cat [PP out]]]

(38) I [VP let [PredP out-Pred [PP the cat]]]

(39) a. Judith threw the TV out the window.
 b. Jorge sent the plumber up the ladder.
 c. Judith threw the TV out.
 d. Jorge sent the plumber up.
shown not to rule out all optionality. While Present-Day English verb-particle combinations show true syntactic optionality, Svenonius demonstrates "that additional factors, such as sentential intonation, can have the effect that one structure is preferred over another" (Svenonius 1996a: 72).

The derivations in (37) and (38) are extended following Chomsky’s (1995) analysis of transitive verbs as involving a shell structure. The ‘finished’ derivations are given in (40), taken from Svenonius 1996a: 70, his example (68).

(40) a. I [p t s V P ts let-VP tv [PredP the cat Pred [vp tp out]]]
 b. I [p t s V P ts let-VP tv [PredP out-Pred [PredP the cat tp]]]

As the derivations in (40) show, the verb moves to V and the subject, which originates in Spec P, moves to a higher projection (not specified by Svenonius). Svenonius further assumes that the case feature of the object is checked by covert movement of the object. He assumes that it is the feature complex that moves, rather than the lexical items themselves.

Concerning the semantics of VPCs, Svenonius assumes that the “special semantic relation” of the verb and the particle reflects l-selection of the particle by the verb. L-selection only takes place in those cases in which the verb has a change-of-state meaning “in which both the manner and the result are lexically specified” (Svenonius 1996a: 72). He further assumes that the verb and the particle must combine at Logical Form (LF), as illustrated in (41) (taken from Svenonius 1996a: 71, his example (70)).

(41) a. I [p t s FF(the)-out-let-VP tv [PredP the-tf cat Pred [vp tp tf]]]
 b. I [p t s FF(the)-out-let-VP tv [PredP tf-Pred [PredP the-tf cat tp]]]

The derivations in (41) show the covert movement of the particle to combine with the verb as well as the covert movement of the features of the object (FF(the)) for case checking reasons.

Svenonius’s (1996a) analysis convincingly accounts for the word order alternation of Present-Day English VPCs, pointing out an information structural difference between the two word orders. It does not capitalise on this however, and it is argued that the word order alternation is the result of an optionality of checking Pred’s EPP features. It captures the predicative nature of particles by assuming a small clause structure in which the particle is the predicate selecting an external argument. The semantics of VPCs, which are often idiomatic, are dealt with at the level of LF, where the verb and the particle combine, accounting for the change-of-state meaning expressed by VPCs. It should be pointed out, however, that the analysis provides no insight into the word-like properties of Present-Day English VPCs. Its LF derivation, which involves combination of the verb and the particle, is a possible solution, but the focus is on the syntax of VPCs rather than on their morphological properties.
2.2.2.5 Conclusion

Small clause analyses of Present-Day English VPCs stress the predicative nature of particles, which are therefore thought to project their own phrase and to take an external argument. The external argument corresponds to the direct object of the VPC and is sometimes generated in the specifier position of the particle’s projection and in other analyses appears in the specifier position of a functional projection on top of the particle’s projection.

Small clause analyses of VPCs have been criticised for various reasons. One of the reasons is the fact that it treats all particles as resultative predicates, whereas there are also non-resultative particles in English. Another problem concerns the distribution of particles and that of resultative adjectival constructions, which is predicted to be similar by adopting a small clause analysis for both, but their distribution is not the same. Resultative adjectival constructions do not show the word order alternation that particles appear in. Although a small clause analysis is often said to work only for VPCs with a transparent meaning (cf. Wurmbrand 2000; Dehé 2002; Ramchand and Svenonius 2002 among others), it can in fact be shown that non-transparent particles are also predicative in nature. It should be noted, however, that not all English particles are resultative, and the small clause structure therefore cannot account for all English VPCs.

Thus, while small clause analyses capture the intuition about the predicative nature of particles, the small clause structure itself is rather problematic (cf. also Blom 2005).

2.2.3 Split VP analyses of Present-Day English verb-particle combinations

Larson’s (1988) split VP hypothesis, later extended by Hale and Keyser (1991, 1993) and Chomsky (1995a), has been adopted in various VPC analyses. Larson’s complex VP structure consists of two VP shells, which allows for the accommodation of verbs which have more than one complement, while preserving binary branching. The presence of an extra shell creates a second complement position in the specifier position of the lower VP, \([\text{VP} \ V \ [\text{VP} \ V \ C]]\). Chomsky (1995a), following Hale and Keyser (1991, 1993), proposes the upper VP layer is headed by a light verb \(v\), which introduces the external argument.\(^7\) The structure in (42) illustrates this.

\[(42)\quad a. \quad \text{Postman Pat hurried his van through the dales.}\]

\(^7\) In Hale and Keyser’s (1991, 1993) framework, \(v\) licenses the external argument and contains a \textit{CAUSE} operator. In their view, syntactic structure directly reflects the argument structure. I will discuss their framework in more detail in Chapter 3.
The light verb v licences the AGENT argument Postman Pat, which is generated in Spec\(v\)P. The two internal arguments of V are generated inside the VP, the THEME argument the van in SpecVP and the PP through the dales in the complement position of V. The split VP structure provides a useful way of representing (transitive) Present-Day English VPCs, because they involve a complex complementation structure, comprising the object and the particle.

2.2.3.1 Radford (1997)

Radford (1997) presents an analysis of Present-Day English VPCs which is cast in the minimalist framework. He proposes a split VP structure for English VPCs, (43) (from Radford 1997: 373, his examples (20a) and (23)).

\[8\] In a later chapter of his book, Radford adopts a VP shell structure with an AgrO projection on top of VP and below \(\pi\)P (Radford 1997: Chapter 10). The analysis of the distribution of VPCs is essentially the same however.
The particle (Radford uses the term ‘prepositional particle’) is in the complement position of the verb and the object of the VPC is generated in SpecVP. Radford is not explicit about the structural status of the particle. Although he treats particles as complements of the verb which together with the verb form a V', the bare label P on top of the particle suggests that the particle does not project a phrase.

In Radford’s analysis, V–Obj–Prt is the underlying order and the alternative order V–Prt–Obj is derived by adjoining the particle to the verb. This is represented in (44) (from Radford 1997: 373, 375, his examples (20b) and (28)).
Radford (1997: 374) argues that the particle, which is base-generated in the complement position of the verb, may optionally adjoin to V. Presumably this involves the particle incorporating into the verb, which creates a complex head. The complex V then moves up to \(v \), as a result of which the particle ends up in a position preceding the object in SpecVP.\(^9\) Radford’s adjunction account is problematic given that it involves right-adjunction of the particle, whereas incorporation involves left-adjunction only. Radford does not consider this, nor does he address the exact nature of the optionality of particle adjunction. The existence of the alternative word order requires it to be optional, but nothing is said about what determines which of the two derivations takes place.

Although Radford convincingly shows the advantage of a VP-shell analysis in accounting for the distribution of Present-Day English VPCs, his analysis of the word order alternation is problematic in that it comprises an operation by which the particle right-adoins to the verb. No insight is provided about the exact structural status of particles, which are simply labelled ‘P’, though the analysis does capture the intuition that particles are predicates by generating the object in SpecVP.

2.2.3.2 Harley and Noyer (1998)

Harley and Noyer (1998) propose a VP-shell analysis of Present-Day English VPCs as part of an investigation into English nominalisations. In their analysis of Present-Day English VPCs, particles head a projection PrtP. The PrtP is in the complement position of the verb and the object is in the complement position of the particle. The structure, as well as the movement operations involved in the derivation for the order V–Obj–Prt, are illustrated in (45), from Harley and Noyer (1998: 148), their example (6).

\[(45)\]

\[\begin{align*}
 a. & \text{Chris wrote the paper up} \\
 b. & \text{The paper was written up by Chris}
\end{align*}\]

\(^9\) See footnote 6.
As the structure in (45b) shows, the object moves to SpecFP for case reasons and the verb moves to the head of \(vP \).

They assume the order \(V\text{–Prt–Obj} \) is derived by “particle shift” (Harley and Noyer 1998: 148). The derivation is given in (46), taken from Harley and Noyer (1998: 149), their example (7).

\[
\begin{array}{c}
(46) \\
\text{a. Chris wrote up the paper.}
\end{array}
\]

\[
\begin{array}{c}
\text{b.}
\end{array}
\]

\[
\begin{array}{c}
\text{DP} \\
\text{Chris}
\end{array}
\]

\[
\begin{array}{c}
\text{vP} \\
\text{eP}
\end{array}
\]

\[
\begin{array}{c}
\text{vP} \\
\text{FP}
\end{array}
\]

\[
\begin{array}{c}
\text{DP, the paper} \\
\text{FP}
\end{array}
\]

\[
\begin{array}{c}
\text{VP} \\
\text{PrtP}
\end{array}
\]

\[
\begin{array}{c}
\text{V} \\
\text{write + upj}
\end{array}
\]

\[
\begin{array}{c}
\text{V} \\
\text{Prt} \\
\text{tj} \\
\text{ti}
\end{array}
\]

As in (45b), the object DP moves to SpecFP, where it picks up case (assigned by \(v \)). The object is generated as a complement of the particle (cf. Guéron 1990). As already pointed out above, this structural representation is undesirable, because it fails to reflect the fact that particles are predicates which select an external argument rather than an internal argument. The derivation shown in (46b) further involves incorporation of the particle into the verb, yielding a complex verb (Harley and Noyer 1998: 149). Their use of the term incorporation is confusing here, because earlier they talk about particle shift as “the additional optional phenomenon of the particle cliticizing to the verb via head-movement” (Harley and Noyer 1998: 148). Both would be equally problematic, as incorporation involves left-adjunction, not right-adjunction. An analysis in which particles are thought to cliticise to the verb is not

\[\text{Harley (2003: 18) points out that Harley and Noyer’s (1998) argument that particle shift is tied to the presence of } v \text{ can explain why stative verbs such as } \text{have and want resist particle shift (as observed by McIntyre 2002), (i), from Harley (2003: 10).} \]

(i) a. He had his jacket off.
 cf. took his jacket off

b. He *had off his jacket.
 cf. took off his jacket

c. The doctor had the splinter out in no time.
 cf. took the splinter out

d. The doctor *had out the splinter in no time.
 cf. took out the splinter

The eventive light verb \(v \) is not present with stative verbs like \(\text{have and want} \), and because particle shift is tied to the presence of \(v \), it follows that these verbs do not allow particle shift.
desirable either, because particles are clearly not phonologically dependent and therefore
should not be analyzed as clitics.

Harley and Noyer point out that the proposed structures account for the
ungrammaticality of coordinating the sequence of the particle and the object (in this
particular order), as shown in (47) (taken from Harley and Noyer (1998: 6), their example
(8b)).

(47) *Chris turned on the oxygen and off the acetylene.

The ungrammaticality of (47) follows from the fact that the particle has cliticized to the
verb, as a result of which the particle no longer forms a constituent with the object. Again,
the cliticization analysis itself is problematic, because English particles are clearly not clitics,
as is evident from their syntactic separability.

In addition, Harley and Noyer’s analysis accounts for the modification facts of English
particles, (48) (taken from Harley and Noyer 1998: 150, their examples (9b) and (10a)).

(48) a. Chris turned the light right off.
b. *Chris turned right off the light

The fact that particles allow modification when they occur after the object, (48a), follows
from the structure in (45), in which there is room for a modifier. The fact that modification
is disallowed when the particle occurs before the object, (48b), follows from the structure in
(46), in which the particle has cliticized to the verb, leaving no room for a modifier (but
note the problems pointed out with this analysis).

In conclusion, while Harley and Noyer’s (1998) analysis is able to account for some of
the syntactic properties of VPCs, it does so by resorting to problematic mechanisms such as
particle incorporation. I do not agree with their structural analysis, in which the VPC’s
object is generated in the complement position of the particle.

2.2.3.3 Svenonius (to appear): split PP

Svenonius (to appear) extends the split VP analysis to the PP. He proposes that the external
argument of the particle is introduced in the specifier of pP, a functional projection
analogous to the sP layer on top of VP, (49).
Note that, in essence, the structure in (49) still represents a small clause, ρP (PredP in Svenonius' 1996a analysis). The functional head ρ is interpreted as a kind of predicator, mediating between the particle and its external argument, the Figure (cf. Theme) in SpecP. Apart from the evidence for the predicative nature of particles discussed above, Svenonius provides semantic evidence for the claim that particles are predicates. The evidence concerns the type of constituents English particles (versus prepositions) combine with. As Svenonius 2002a) and Ramchand and Svenonius (2002) show, particles, unlike prepositions, do not select a complement. This is illustrated by the examples in (50) (examples are mine).

(50) a. The fox scared the magpie off his back.
 b. The fox scared the magpie off.

Both examples in (50) contain an instance of off. In (50a), off is a preposition, which is clear from the fact that there is a complement, i.e. *his back*. In (50b), off is a particle, because there is no complement. There is, however, another element present, *the magpie* (also present in (50a)), which looks like a subject (*the magpie is off*). The elements that particles and prepositions combine with are described in terms of Talmy’s (1978) Figure and Ground. Figure refers to a moving or conceptually moving point and Ground is a reference point with a stationary setting. Svenonius (2002a) (see also Ramchand and Svenonius 2002) shows that particles combine with a Figure (the ‘subject’ of the particle) rather than with a Ground like prepositions (the Ground being the preposition’s complement, i.e. *his back* in (50a)). This generalisation distinguishes prepositions from particles: prepositions always have a Ground element (an internal argument) and sometimes a Figure element (external argument) too. Particles never combine with a Ground (they have no complement), but combine with a Figure, cf. (50b). These observations support a small clause type analysis, in which the particle is a predicate, which takes the direct object as its external argument.
2.2.3.4 Ramchand and Svenonius (2002)

Ramchand and Svenonius (2002) begin by discussing the various different analyses that have been proposed to account for the syntax of Present-Day English verb-particle combinations. They point out that “there is still a dramatic lack of consensus regarding its syntactic structure” (Ramchand and Svenonius 2002: 101) and set out to formulate an approach which combines the advantages of the small clause approach and the complex predicate approach. This comprises analysing the verb and the particle as forming a single complex event with a single argument structure. Their analysis is cast in Hale and Keyser’s (1993) framework, in which syntactic structures are assumed to directly reflect lexical semantics (l-syntax). The meaning of the verb is said to consist of several subevents, which are conceptualised with primitives such as BE, BECOME, CAUSE. In the sense of this framework, the complex event expressed by the verb and the particle consists of three subevents, expressed in the l-syntactic decomposition structure in (51) (taken from Ramchand and Svenonius 2002: 106, their example (12)).

\[
\begin{align*}
(51) & \quad \text{(causing subevent)} \quad \rightarrow \quad [\text{process subevent} \quad \rightarrow \quad \text{(result state)}] \\
\text{iP} & \quad \text{VP} & \quad \text{RP}
\end{align*}
\]

The structure in (51) represents the complex verbal structure assumed by Ramchand and Svenonius, which consists of a causing subevent, lexicalised by \(i \), a process subevent, lexicalised by \(V \) and an optional result state \(R \). The structure corresponding to (50) is presented in (52).

11 Ramchand and Svenonius interpret l-syntax as “the level at which the event is built up” (Ramchand and Svenonius 2002: 106); see also footnote 9.

12 The Result Phrase (RP) is assumed to be optional, because not all English particles are resultative predicates. For those that are not resultative, RP is not projected, which means that there is a ‘bare’ PrtP which combines directly with \(V \). Note that this does not undermine the observation that all VPCs behave the same syntactically: the object is generated in SpecPrtP in both cases. When RP is present, it moves to SpecRP, when no RP is present, it stays in PrtP. Both these scenarios derive the same word order possibilities.
The DPs in the specifier positions of the structure in (52) “get a uniform event-related interpretation” (Ramchand and Svenonius 2002: 106): the DP in SpecP is interpreted as the initiator (agent), the DP in SpecVP is interpreted as the undergoer, and the DP in SpecRP is the holder of the result state. The part of the structure labelled RP can be interpreted as a small clause structure (cf. PredP in Svenonius 1996a). The object, functioning as the subject of the predicative particle, is generated in the specifier of the (functional) projection RP on top of PrtP (cf. PP in Svenonius 1996a). Ramchand and Svenonius (2002: 102) point out that they do not assume the object–particle sequence to be clausal (as is the case in most small clause accounts). For Hale and Keyser (1993), the syntactic structures are located in the lexicon (l-syntax). Ramchand and Svenonius’ approach does not involve the decomposition of lexical items, but portrays “a kind of ‘first phase’ syntax where the compositional properties of event structure and event participanthood are built up” (Ramchand and Svenonius 2002: 112).13

In Ramchand and Svenonius’s analysis, the object of VPCs is base-generated in SpecPrtP. It cannot be base-generated in SpecRP, because they assume that particle shift moves the particle to R (Pred in Svenonius 1996a) but no further. Thus, base-generation of the object in SpecRP would not derive the order V–Prt–Obj. The order V–Prt–Obj can therefore only be derived when the object is base-generated in a position lower than R, i.e. SpecPrtP. This is schematised in (53) (taken from Ramchand and Svenonius 2002: 108, their example (17)).

(53) \[
\begin{array}{ll}
\text{[a AGT throw-r [VP UNDR tv [RP HOLDR out-R [PrtP the rat [Prt tPrt []]]]]]}
\end{array}
\]

13 Ramchand (2003) proposes a ‘first phase’ syntax, in which all systematic and generalisable lexical behaviour is argued to be handled in syntax rather than in the lexicon, which contains idiosyncratic information only.
As the structure in (53) shows, the particle *out* undergoes head-movement from Prt to R (but no further, because that would involve incorporation into the verb or its trace). The order V–Prt–Obj can only be derived when it is assumed that the object *the rat* is base-generated in SpecPrtP. In SpecRP, it would still precede the shifted particle in R. Evidence for this particle shift derivation comes from particle modification facts, involving such modifiers as right, straight (cf. also Den Dikken 1995: 38–41). Ramchand and Svenonius (2002: 109) assume that these modifiers head a projection DegP on top of PrtP. The fact that particles which occur before the object cannot be modified then follows from the fact that the modifier (generated in Deg) blocks head movement of the particle to R, (54b). It is also not possible for the modifier and the particle to move to R together, (54c) (examples are mine).

\[(54)\]
\[a. \text{The child swallowed [} \text{R the lego piece [VP [X right [Prt down]]]}\].\]
\[b. \text{*The child swallowed [} \text{R [X down]; [VP the lego piece [X right [Prt t]]]}\].\]
\[c. \text{*The child swallowed [} \text{R [right down]; [VP the lego piece [X t]]]}\].\]

The alternative word order, V–Obj–Prt, is derived by movement of the object to a higher position in Ramchand and Svenonius’s analysis (again following Svenonius 1996a). They suggest this higher position is SpecRP (SpecPP in Svenonius 1996a). This is schematised in (55) (taken from Ramchand and Svenonius 2002: 108, their example (18)).

\[(55)\]
\[\text{[} \text{AGT throw-3} \text{[VP UNDR tv [VP the rat [PrtR the rat [Prt out]]]]]}\]

The structure in (55) shows that the object *the rat* has moved from SpecPrtP to SpecRP, whereas the particle has stayed in situ. Ramchand and Svenonius follow Svenonius’s (1996a) suggestion that the movement of the object is motivated by EPP-requirements of R (Pred in Svenonius 1996a). Alternatively, they suggest the trigger for the movement could be a lexicalisation requirement of SpecRP.

In conclusion, the analysis proposed by Ramchand and Svenonius (2002) successfully combines some important aspects from small clause and complex predicate accounts of Present-Day English VPCs. The lexical decomposition structure they propose captures the complex event semantics of VPCs and that of other resultative constructions. Their account of the word order alternation does not include unmotivated case-related movements, as in many other accounts of VPCs, but is the result of an optionality in satisfying R’s EPP features. As with Svenonius (1996a), however, the account does not provide insight into the apparent ambiguity of VPCs as syntactic or morphological constructs.

2.2.3.5 Conclusion

Split-VP analyses of Present-Day English VPCs pay more attention to the semantics of VPCs than the morphological and some other syntactic analysis, like the small clause analysis for example, do. The complex complementation structure of the verb is dealt with by postulating an extra projection on top of the VP. In the lexical decomposition analysis of
Ramchand and Svenonius (2002), following Hale and Keyser’s (1993) proposal, each projection level is taken to lexicalise a semantic operator such as CAUSE or BECOME, thus capturing the complex event semantics of English VPCs.

The details of each of the Split-VP analyses discussed in this section differ and the analyses involve different mechanisms for deriving the word order alternation. In most analyses, the proposed mechanisms are case-related, the exception being Ramchand and Svenonius’s (2002) account.

2.2.4 Other analyses of Present-Day English verb-particle combinations

2.2.4.1 Haegeman and Guéron (1999)

In Haegeman and Guéron’s (1999) analysis of transitive Present-Day English VPCs, the particle heads its own projection and the object is generated in the complement position of the particle (cf. Guéron 1990; Den Dikken 1995; Harley and Noyer 1998). After reviewing what they call “the single-verb hypothesis” (Haegeman and Guéron 1999: 254), which they reject, they suggest the following structure for English VPCs, (56b) (taken from Haegeman and Guéron 1999: 252, their examples (156) and (157)).

![Diagram](image)

The structural representation given in (56b) resembles a PP structure, in which the PP is generated as a complement of the verb, and in which the preposition selects a NP complement (e.g. *John ran up the street*; Haegeman and Guéron 1999: 249, (146)). In the suggested analysis, then, the verb and the particle originate as distinct elements in the syntax, and since the object follows the verb as well as the particle, the order V–Obj–Prt has to be accounted for.

First, however, Haegeman and Guéron take a closer look at the order V–Prt–Obj and propose its derivation involves (overt) particle incorporation, (57) (from Haegeman and Guéron 1999: 258, their example (174b)).

14 Harley and Noyer (1998) also assume particle incorporation, but in their analysis, the resulting complex is a V head rather than a V*.
The structure in (57) presents V*, which is created after the particle has incorporated into the verb. The precise structural status of V* remains unclear, as Haegeman and Guéron do not discuss it. They observe that the incorporation account explains the behaviour of VPCs as single units (as is evident from gapping and modification facts for example). They also point out that the incorporation can account for “the semantic cohesion of the verb and the particle” (Haegeman and Guéron 1999: 259). They argue that the impossibility to substitute one particle with another, as in *John tore in the letter, is explained by the incorporation account, in which the verb and the particle form a single, complex verb. This is not very convincing, however, given their assumption that particles start out as a separate lexical item. Moreover, their treatment of particle movement as incorporation is problematic, since it involves right-adjunction rather than left-adjunction. Haegeman and Guéron (1999: 258) argue that particle incorporation is motivated by the case requirements of the object. Since particles cannot assign case, the only available case-assigner is the verb. Haegeman and Guéron assume that the particle interrupts the locality relation that case assignment requires when it remains in its base position and is therefore forced to move (cf. Neeleman 1994, 2002).

In order to account for the separability of the verb and the particle, Haegeman and Guéron propose another solution to the case problem. The alternative option allows the object to move to a position next to the verb, (58) (from Haegeman and Guéron 1999: 262, their example (180d)).
Movement of the object, as illustrated in (58), is motivated by the case-requirements of the object. Since the particle is thought to block outside government and therefore case-assignment by the verb, the object moves to SpecPrtP, where it receives case from the verb. This movement is similar to that in Den Dikken’s analysis, differing only in that Haegeman and Guéron’s account does not include a small clause (there is no functional projection on top of PrtP).

In conclusion, the account offered by Haegeman and Guéron provides very little insight in the syntax and morphology, let alone the semantics, of Present-Day English verb-particle combinations. Some aspects of their analysis, such as particle incorporation, are plainly problematic, others involve unmotivated mechanisms, especially when it comes to deriving the word order alternation. This is said to be case-related, and the object can receive case in two ways. Either the object moves, or the particle moves. Firstly, it is undesirable that movement of an element (in this case the particle) should be triggered by requirements of another element (the object). Secondly, it is not clear what forces one movement option over the other. All in all, the analysis fails to usefully contribute to the debate on the syntax of Present-Day English verb-particle combinations.

2.2.4.2 Wurmbrand (2000)

Wurmbrand (2000) proposes an analysis of West-Germanic VPCs (Wurmbrand uses the acronym PVC, for Particle Verb Combination) which involves two independent, i.e. not derivationally related, structures, (59) (taken from Wurmbrand 2000: 1).

\[
\begin{align*}
(59) \quad & \text{a. Small clause structure} & \text{b. Complex head structure} \\
& \text{VP} & \text{VP} \\
& V & V' \\
& \text{SC} & \\
& Obj & V' \\
& & \text{Prt} \\
& & Obj
\end{align*}
\]

Wurmbrand argues that the choice between these two structures is predictable from the semantics of VPCs, which are either transparent or idiomatic (Wurmbrand 2000: 1). The class of transparent VPCs includes VPCs whose meaning can be determined by the meaning of its parts. Wurmbrand notes that the semantics of VPCs are gradable and that “it is not always obvious how to draw the line between transparent and idiomatic VPCs” (Wurmbrand 2000: 5). The test she provides to facilitate the classification involves establishing whether a particle in a VPC allows for contrastive particles. Whereas transparent particles allow for such contrastive particles, idiomatic particles do not, (60) (my examples).

\[\text{15 Although Wurmbrand does not completely exclude the possibility that the two structures are derived (Wurmbrand 2000: 10).}\]
Wurmbrand suggests that this difference follows from the nature of transparent and idiomatic particles. Transparent particles, since they contribute their own meaning to that of the entire VPC, are expected to “allow the replacement of the particle in a given PVC with a different particle from the same semantic class” (Wurmbrand 2003: 5), whereas the meaning of VPCs containing an idiomatic particle is “unique and therefore does not allow for different particles in the same PVC (i.e., in a PVC with similar meaning)” (Wurmbrand 2003: 5–6).

Another distinguishing feature of transparent and idiomatic VPCs put forward by Wurmbrand is topicalisation. As the examples in (61) show, only particles with a transparent meaning can be topicalised (the examples are mine).

(61) a. Up the seamstress moved the needle (not down).
 b. *Down Betsy nailed the problem.

According to Wurmbrand, these facts receive a straightforward explanation under the assumption that topic/focus is interpreted semantically and can only be expressed by elements with a transparent meaning (Wurmbrand 2000: 8). Since idiomatic particles do not have a contrastive counterpart they cannot receive focus and therefore cannot be fronted.

Wurmbrand argues that VPCs with transparent (i.e. literal) semantics reflect a small clause structure, (59a), while VPCs with an idiomatic meaning represent a complex head structure, (59b). This is based on the assumption that transparent particles are licensed in a small clause configuration, while idiomatic particles are licensed in a local (i.e. a head-complement or specifier-head) relation with the verb (Wurmbrand 2000: 2). She tests the predication relation between particles and the object of the VPCs by means of the copula test, (62).

(62) The needle is up.
 *The problem is down.

While the copula test yields an ungrammatical result for the idiomatic particle in (62), the particle does in fact predicate over the NP the problem. Thus, the meaning of a predicate may vary from transparent to completely idiomatic (cf. Van Kemenade and Los 2003: 90). The copula test therefore does not prove that a small clause configuration is restricted to transparent VPCs.

To conclude, Wurmbrand’s (2000) analysis fails to capture the important fact that the word order alternation, reflected in Wurmbrand’s two different structures, is available for both transparent and idiomatic VPCs. Her claim that the choice between the two structures, i.e. the two word orders, is linked to the transparent or idiomatic semantics of VPCs is therefore not convincing.
2.2.4.3 Zeller (2001a, 2002)

Zeller’s (2001a, 2002) analysis departs from the observation that Present-Day English VPCs show both word-like and phrasal characteristics. On the basis of this, Zeller proposes that particles are hybrid between head and phrase, thus combining aspects of both the morphological and the syntactic approach. Although the bulk of his (2001a) study focuses on German VPCs, he extends the proposed analysis to English VPCs in Chapter 7. The analysis of particles as hybrid elements is cast in the Bare Phrase Structure (BPS) theory of projection (cf. Chomsky 1995a,b). In BPS, lexical items show properties of minimal and maximal projections and the intermediate bar-level is discarded with. The structure Zeller proposes for English VPCs is given in (63).

\[(63) \quad V \quad V \quad P_r_t \]

In this structure, the particle can either be interpreted as minimal (X') or maximal (XP). When the minimal status of the particle is emphasised, the topmost V represents a complex V and the verb and the particle form a complex verb. When the particle receives the maximal interpretation, however, the topmost V represents a V' and the verb and the particle are in a verb-complement relation. The V interpretation is made possible by a reanalysis of the structural relationship between the verb and the particle, provided that the particle is structurally adjacent to the verb, (64).

\[(64) \quad \text{A head X and the head Y of its complement YP are structurally adjacent.} \quad (Zeller 2001a: 36) \]

As Zeller (2001a: 300) points out, this analysis has the advantage of being able to explain both the syntactic and morphological properties of VPCs without having to postulate more than one structure. An important element of Zeller’s analysis concerns the status of the complex V, which is the result of reanalysis. He assumes that it is a quasi-morphological object, since although it is a syntactic word (i.e. V), it is not morphologically well-formed (it does not obey the Right-hand Head Rule). It is not clear how this should be treated formally, however.

Zeller further assumes that particles lack functional structure (contra Svenonius 1996a, to appear; Ramchand and Svenonius 2002 as well as small clause analyses, e.g. Den Dikken 1995) and are complements of V. This is illustrated by the structure in (65), from Zeller (2001a: 284), his example (27b).
Zeller argues that certain lexical items require an extended projection. A good example of such a lexical item is V, which requires the functional layer vP for structural case assignment. Similarly, Zeller argues that prepositions require a functional projection for structural case assignment. Particles, on the other hand, do not have a complement (there is no reference object). They have no structural case to assign and this is reflected in the structure by the absence of a functional projection.\footnote{Compare Svenonius’ (to appear) analysis in which a functional projection pP sits on top of PP (he treats particles as intransitive Ps, hence the label). The specifier of pP hosts the object of the VPC, which functions as the subject of the particle. In this sense, Svenonius’ analysis is comparable to the small clause accounts.}

Zeller (2001a: 127) notes that there is a correspondence between the presence of functional structure and referentiality. Thus, the fact that particles are non-functional implies that they are non-referential. The use of a particle verb focuses on the activity denoted by the VPC and does not signal the unexpressed reference object in the context (Zeller 2001a: 139). This is also the case for adjectival particles in German, an example of which is given in (66) (from Zeller 2001a: 147, his example (80a)).

(66) Peter hat krank gefeiert
P. has PART(sick) celebrated
‘Peter played hooky’

The adjectival particle ‘sick’ is non-referential and thus has no functional structure. This is contrasted by resultative constructions, in which a THEME argument gives the adjective a referential interpretation, (67) (Zeller 2001a: 147, his example (82a)).

(67) Peter hat seine Nachbarn krank gefeiert.
P. has his neighbours sick celebrated
‘Peter had so many parties that his neighbours finally became sick’

The addition of the internal argument ‘his neighbours’ yields a resultative interpretation. The referentiality of resultatives leads Zeller to propose that resultative
constructions, unlike adjectival particles (cf. (67)), have functional structure. Zeller’s assumptions about the structure of resultative constructions call into question his previously made claims about the structure of particles. Given that particle verbs often have a resultative interpretation, and are therefore referential, we would expect particles to have functional structure after all (cf. Svenonius’ (to appear) P).

Zeller continues the argument by showing that the structure of particles (i.e. lacking functional structure) in combination with the ambiguous status of particles (maximal and minimal at the same time) explain the syntactic and morphological properties of VPCs. The absence of functional structure causes the verb and the particle to be structurally adjacent (Zeller 2001a: 148), (68) (from Zeller 2001a: 36, his example (30)).

\begin{equation}
\text{A head X and the head Y of its complement YP are structurally adjacent.}
\end{equation}

This local relation between the verb and the particle, both lexical heads, distinguishes VPCs from other verb-complement structures, which involve structural adjacency between a lexical head (the verb) and a functional head (the head of the complement). The structural adjacency between the verb and the particle expresses their special ambiguous nature. They are not words, but at the same time their relation is more local than that of elements forming phrases (e.g. verb and complement forming a VP). The verb and the particle are interpreted as a verb-complement structure when the maximal status of the particle is emphasised, (69a), and as a compound verb when its minimal status is highlighted, (69b).

\begin{equation}
\begin{align*}
(69) & \quad \text{a.} & \text{b.} \\
& \quad \text{VP} & \quad \text{V} \\
& \quad \text{V} \quad \text{PP} & \quad \text{V} \quad \text{P} \\
& \quad \text{P} & \quad \text{P}
\end{align*}
\end{equation}

Note that the verb and the particle are structurally adjacent in both structures.

In order to account for the morphological behaviour of VPCs, Zeller further assumes that the structural adjacency allows the verb and the particle to reanalyse as a morphological construct. In this way, the morphological behaviour of VPCs can be explained. The principle of reanalysis is stated in (70), from Zeller (2001a: 255).

\begin{enumerate}
\item[(70)] \textit{Principle of Reanalysis} \\
Given two terminal nodes \(X, Y\), and a lexical entry \(L\) that requires \(X\) and \(Y\) to be structurally adjacent. Then the lexical entries of \(X\) and \(Y\) can be unified with a syntactic structure in which \(X\) and \(Y\) are part of the same word \(X'\).
\end{enumerate}

Whereas in German, reanalysis of the verb and the particle is possible in certain syntactic contexts only (cf. Zeller 2001a: 257), the operation can occur unconditionally in English. The structural option of reanalysis accounts for the role of VPCs in word formation, as the reanalysed verb and particle can be the input to word formation processes. Moreover, the
fact that reanalysis adheres to the linear (syntactic) order of the elements involved explains why VPCs converted into morphological constructs do not obey the Right-hand Head Rule. In addition, the word order alternation of English VPCs is accounted for. Once the verb and the particle have reanalysed to become a complex V, it can head-move to \(r \), (71).\(^{17}\)

\[
\text{(71)}
\]

\[
\begin{array}{c}
\text{VP} \\
\text{[drink up]} \\
\text{the beer} \\
\text{V'} \\
\text{V} \\
\end{array}
\]

Compare the structure in (71) with that in (65). In (65), the particle is expressed maximally and the verb moves to \(r \) on its own, yielding the order V–NP–Prt. The structure in (71) represents the situation in which the minimal status of the particle is emphasised and in which the verb and the particle have reanalysed to become a complex V. In this scenario, the entire complex V moves to \(r \), deriving the order V–Prt–NP.

It should be noted that Zeller does not discuss what, if anything, determines when the particle is interpreted as minimal and when as maximal.

In connection with word formation, Zeller (2001a: 287–288) mentions that English VPCs do not productively undergo derivational word formation processes (cf. also Den Dikken 1995: 23, note 21). Although his observation that word formed from English VPCs do not adhere to morphological rules (e.g. Right-hand Head Rule) is correct, it is by no means the case that derivational word formation is unproductive with English VPCs. This is evident from the numerous examples of nominalisations, agentive nouns and adjectives formed from English VPCs (cf. Chapter 1). Zeller suggests that the violation of morphological rules in VPC word formation follows from the nature of reanalysis, which adheres to the syntactic element ordering.

2.2.4.4 McIntyre (2004)

McIntyre (2004) argues that direct objects of VPCs are not arguments of the verb. Rather, it is the particle that selects the arguments, as suggested by the argument blocking and unselected object facts presented in (6) above and repeated in (72).

\(^{17}\) Zeller (2001: 111) treats the light verb \(\text{ras} \) as a functional head that introduces the external argument and that determines accusative case on the object (cf. Larson 1988; Hale and Keyser 1993; Kratzer 1996; Chomsky 1995b).
(72) a. The manager laughed off the speculations.
 *The manager laughed the speculations.
 b. The imperturbable novelist was typing away.
 *The imperturbable novelist was typing (the novel) away (the novel).

In (72a), it appears to be the particle *off that selects the object *the speculations, because the verb *laugh is intransitive. In (72b), the VPC seems to be intransitive by virtue of the particle *away, because the verb *type is optionally transitive. McIntyre proposes a structure in which the particle is a predicate whose argument is generated in a functional projection (ChangeP) on top of the particle projection, (73).

In the conflation structure, the complex event semantics, which consist of an activity and a result, is converted to syntactic tree nodes. The projection INITP corresponds to sP in other VP-shell type analyses and introduces the INITIATOR (compare AGENT). The head Change of the ChangeP projection mediates a predication relation between its PP complement and SpecChangeP. This structure also accounts for resultative APs, in which case PP in the structure in (73) is replaced by AP. Note that it is very similar to small clause structures in that there is a functional head (Change) mediating the predication. The facts in (72) follow from this analysis: the particle in (72a) selects an external argument, yielding a transitive VPC. The particle in (72b) does not select an external argument and the VPC is therefore intransitive.18

18 The fact that the particle away in (72b) does not select an external argument correlates with its non-resultative meaning: it expresses durative/continuative aspect.
2.2.4.5 Blom (2005)

In her study on ICVs and SCVs in Dutch, Blom (2005) also discusses VPCs in other Germanic languages. For English VPCs, she proposes that they have a special structure, in which the verb and the particle form a phrasal construct, but are smaller than XPs. She rejects a phrasal analysis of particles on the basis of the observation that many particles which allow modification “cannot appear in typical XP-positions” (Blom 2005: 347). She also points out that VPCs and other resultative constructions do not have the same distribution, which indicates that they are not structurally identical. Rather than as phrases, she analyses English particles as non-projecting words. The structure she assigns to English VPCs is presented in (74) (from Blom 2005: 247), where the particle is represented by X.

\[
\text{[V} - \text{X]} \text{V'} - \text{NP}\]

As the structure in (74) shows, Blom assumes that the order \(V – \text{Prt} – \text{Obj}\) is the underlying order. She does so on the basis of the evidence provided by Dehé (2002) as well as on the basis of the frequency of this word order, which is much higher than that of the alternative word order. She also mentions the fact that English VPCs allow this order with any non-pronominal NP, in contrast to the other order, which does not allow heavy NPs for example. The distribution of NPs in VPCs appears to be pragmatically influenced, however, and need not say anything about the underlying order.

She assumes that the alternative word order \(V – \text{Obj} – \text{Prt}\) is the result of the interaction between a stylistic rule of particle extraposition, which is special to English, and an Information Structure (IS) rule, (75) (Blom 2005: 349).

\[
\text{(Topic) (Common Ground) Focus}
\]

The IS rule in (75) states that focus is assigned in final position. When particles receive focus, they undergo extraposition. The stylistic rule is understood as a syntactic rule that is “not part of the syntactic core of the grammar” (Blom 2005: 349). The order \(V – \text{Obj} – \text{Prt}\) is thus the result of bringing the particle into focus. Particles lend themselves to being brought into focus, because they carry primary stress. The fact that particles in focus position allow a modifier such as \text{right} is accounted for by claiming that such modifiers are focus markers, which undergo extraposition together with the particle.

In order to account for the fact that some particles can be topicalised and can occur in a copula construction, (76)–(77) (Blom 2005: 354).

\[
\text{… and out he threw the garbage/ down he pulled the handle/ up he threw the ball}
\]

\[
\begin{align*}
\text{throw the garbage } & \text{out} & \text{result: The garbage is out.} \\
\text{pull the handle } & \text{down} & \text{result: The handle is down.} \\
\text{throw the ball } & \text{up} & \text{result: The ball is (went) up.}
\end{align*}
\]
Since the positions that these particles occupy in these constructions are XP positions, Blom proposes that these VPCs have a different structure, which is given in (78) (Blom 2005: 355).

(78) $[V \text{ NP } \text{XP}]_{VP}$

Blom thus assumes that there is a structural difference between transparent (cf. (77)) and non-transparent VPCs (cf. Wurmbrand 2000). A problem with this analysis is that both transparent and non-transparent VPCs exhibit the same word order alternation. Blom proposes that transparent VPCs can have two structures: the one in (78), which she assumes is the historical origin of English VPCs, or the one in (74) above. This raises the question what motivates the choice between the two structures. In addition, it is not clear from the analysis why transparent particles, which are XPs historically (cf. (77)), are able to occur in the typical VPC structure (cf. 74)) at all, given that they are “semantically and syntactically independent XPs” (Blom 2005: 355). All in all, the analysis resorts to extra structure and mechanisms to account for the word order alternation, which is in fact the core characteristic shared by all English VPCs. In addition, even though non-transparent particles do not show up in the copula construction, they often do express a result and may still be seen as (grammaticalised) secondary predicates.

2.2.4.6 Conclusion

The analyses presented in this section are subsumed under ‘other analyses’, but in fact most make use of insights of morphological, complex predicate, small clause and Split-VP analyses. Of the analyses discussed, only Wurmbrand’s (2000) pays a good deal of attention to the semantics of VPCs, but her analysis misses the crucial point that all VPCs behave the same syntactically (with the exception of topicalisation) by proposing two different structures for transparent and idiomatic VPCs. Zeller’s analysis fuses the insights of the morphological and syntactic analyses and proposes that particles are minimal and maximal at the same time.19

2.3 Summary and conclusions

This chapter presents a critical review of the existing analyses of Present-Day English verb-particle combinations. A distinction is made between morphological analyses, in which VPCs are treated as morphological words, and syntactic analyses, which comprise a range of different structural analyses. Morphological analyses, while capturing the word-like properties of VPCs, face two main problems. The first problem concerns the fact that VPCs, if analysed as morphological words, violate the Right-hand Head Rule. The second problem is that Lexical Integrity is violated by the derivation of the orders in which the

19 Toivonen (2002, 2003) proposes something similar for Swedish particles, which she analyses as optionally projecting words.
particle occurs separated from the verb. Syntactic analyses come in various guises and focus on the fact that the particle is separable from the verb. These analyses often run into problems when they seek to account for the word-like behaviour of VPCs. The accounts involve a range of different mechanisms (including object shift, particle shift) which are often unmotivated and therefore hardly insightful. Of the two types of analyses, however, it is clear that a syntactic analysis of Present-Day English VPCs is to be preferred, the main reason being the separability of the particle (cf. also Blom 2005 for Dutch and English).

The crucial intuitions comprise the separability of the particle, the unit-like character of the verb and the particle, the predicative nature of particles (though not always resultative) and the syntactic optionality of the word order alternation, which was shown to be governed by information structural factors by Dehé (2002). None of the analyses discussed in this chapter accounts for all of these. In fact, most of the existing accounts of Present-Day English VPCs concentrate on the syntactic and morphological properties of the combination and have little to say about its semantics.
3 A lexical decomposition analysis of the Present-Day English verb-particle combination

In this chapter, I propose an analysis of Present-Day English VPCs. None of the existing analyses discussed in Chapter 2 were found satisfactory, partly because they fail to cover all the properties of VPCs and partly because they involve unmotivated mechanisms which needlessly complicate other parts of syntax. In the analysis presented in this chapter, the verb and the particle are generated as separate elements in the syntax. I argue that Present-Day English particles are ambiguous between head and phrase and propose a lexical decomposition analysis of the syntax of Present-Day English VPCs, which I will show accounts for the syntactic, morphological and semantic characteristics of Present-Day English VPCs.

The overview of the semantic, syntactic and morphological characteristics of English VPCs presented in Chapter 1 illustrates the well-known paradoxical nature of the construction. The examples in (1) provide a glimpse of the contradiction inherent in English VPCs.

(1) a. Bonnie and Clyde divided (up) the money (up).
 b. The bank beefed up security after the second robbery in three days.
 c. Students often ride clapped-out bicycles.

While the syntactic separability of English VPCs signals phrasal status, (1a), their semantics, (1b), as well as their morphological possibilities, (1c), indicate that they are words. Much of the literature on English VPCs as discussed in Chapter 2 concentrates on accounting for the word order alternation, but often neglect the issues of how syntax and semantics are linked, and how syntax and morphology are related. There is no one-to-one correspondence between the syntax and semantics of English VPCs, which is evident from the fact that the two word orders have the same meaning. Moreover, the word order alternation is available for transparent, (2a), as well as non-transparent VPCs, (2b), with the exception of some fixed expressions which allow only one word order, (2c).

(2) a. The tired housekeeper put (down) the kettle (down).
 b. Our loud partying ticked (off) the neighbours (off).
 c. He always succeeds in getting (*up) his sister’s back (up).

A semantic characteristic common to all VPCs is the expression of a complex event, which is formed by the meaning of the verb and that of the particle. In this sense, the meaning of English VPCs is always compositional.

The word-formation properties of English VPCs indicate that VPCs are at the boundary between syntax and morphology. The suffix placement in words derived from VPCs complicates the matter further, as suffixes often occupy a position on the verbal part rather than on the right edge of the entire converted VPC.
(3) She stopped collecting stuff-up teddy bears long ago.
The film we saw last night was about a caster-out of demons.

Although the converted VPCs certainly behave as X’s in examples such as the ones in (3), an explanation is required for the position of the suffixes, which is unexpected given the normal configuration of X’s.

The argument structure of English VPCs also deserves attention. Beside the numerous transitive VPCs, there are unaccusative and unergative VPCs, (4a) and (4b) respectively. These are often left undiscussed in the literature.

(4) a. The old tree fell down.
b. The students are chilling out.

An intriguing observation that has often been made in the literature is that the argument structure of some VPCs is not the same as that of the verb contained in the VPC. Thus, some VPCs feature a so-called unselected object, (5a), while others lack an object that the isolated verb would select, (5b).

(5) a. Her ex coughed up the money.
b. The athlete’s legs gave out.

These facts suggest that VPCs have an argument structure of their own that is different from that of the verb and that of the particle. Alternatively, it could be the particle that selects or blocks the argument.

The organisation of this chapter is as follows. In §3.1, I discuss the syntactic structure of Present-Day English VPCs and propose that English particles are hybrid between head and phrase. In §3.2, I argue for a lexical decomposition analysis of transitive VPCs, in which their semantic decomposition is directly reflected in their syntax. In §3.3, I propose that the word order alternation of Present-Day English VPCs is a result of their hybrid nature and I discuss the role of focus. In §3.4, I show how the proposed analysis can also account VPCs with other selectional properties, such as unaccusative and unergative VPCs. In §3.5, I provide an account of the word formation possibilities of English VPCs. §3.6 presents the conclusions of this chapter.

3.1 Present-Day English particles as optionally projecting elements

In this section, I will argue that Present-Day English particles are hybrid between head and phrase, providing evidence from the syntactic, morphological and semantic characteristics of English VPCs. Several previous analyses have implemented this idea in various ways (Zeller 2001a, 2002; Neeleman 1994, 2002; Toivonen 2002, 2003). In the analysis proposed here, English particles are treated as optionally projecting elements, which may, but do not always project a phrase.
The most conclusive proof that English VPCs are phrases is the separability of the verb and the particle, (6).

(6) a. That hilarious anecdote spiced up his speech.
 b. That hilarious anecdote spiced his speech up.

Convincing proof that English VPCs are units is provided by coordination, (7), and gapping facts, (8).

(7) Dad washed up and dried the beer glasses.
(8) Grandma switched off the web cam and granddad ejected the computer.

The facts presented in (6)–(8), among others (see Chapter 1), illustrate the paradox between the word-like behaviour of English VPCs (cf. complex verb analyses; Johnson 1991) and their phrase-like behaviour (cf. small clause analyses, e.g. Kayne 1985; Den Dikken 1995). Following several other proposals (cf. Neeleman 1994, 2002; Zeller 2001a, 2002; Toivonen 2002, 2003), I take these facts to reflect optionality in projection by the particle. Thus, English particles have the option of projecting a phrase (PrtP) or, alternatively, they have the option of not projecting (Prt).

The idea that particles are optionally projecting elements has been proposed elsewhere in the literature. Neeleman’s (1994, 2002) account was the first to treat particles as elements which optionally project (cf. Chapter 2). In the spirit of Bare Phrase Structure theory, Zeller’s (2001a, 2002) account is cast in Bare Phrase Structure theory, and treats particles as elements that are minimal and maximal at the same time (cf. Chapter 2). Toivonen (2002, 2003) provides an LFG account of Swedish particles, in which they are treated as words which are lexically listed as projecting, non-projecting or both. Toivonen (2003: 63) adopts a phrase structure rule which postulates that non-projecting particles obligatorily head-adjoin to V. Not discussed by Toivonen is that the phrase structure rule creates a right-adjoined structure, which is problematic in the light of Kayne’s (1994) antisymmetry theory, which allows left-adjunction only (cf. Chapter 2).

An analysis treating particles as ambiguous between words (Xo) and phrases (XP) deviates from X’-theory in that heads always project a phrase in syntax under standard X’-theoretic assumptions. Thus, according to X’-theory, when a particle is inserted in the syntax from the lexicon, it represents a head Prt which projects a phrase PrtP, (9).

(9) LEXICON
 particle

 SYNTAX
 PrtP
 Prt' Prt
In the spirit of the Minimalist Program, Bare Phrase Structure (BPS) theory (Chomsky 1995a,b) aims to simplify phrase structure and disposes of bar-levels. Words are no longer dominated by labels, but simply combine with other words, (10).

\[(10) \quad \text{the} \quad \text{the} \quad \text{professor} \quad \text{mad} \quad \text{professor} \]

The BPS view on structural representation entails that an element can be simultaneously minimal and maximal. The adjective \textit{mad} in (10), for example, is minimal because it does not project any further, but is also maximal for exactly the same reason. As Zeller (2001a, 2002) has shown, the BPS view on structural representation paves the way for an analysis of elements that appear to be ambiguous between head and phrase, such as English particles, as optionally projecting words. An analysis in terms of optional projection differs from BPS in that a non-projecting word is considered to be minimal, whereas it would still also be maximal in BPS terms. The crucial distinction is that projection versus non-projection is not analogous to maximal versus minimal.

As pointed out above, the analysis of particles as elements which either project or fail to project a phrase in syntax is based on the unit-like behaviour of VPCs as well as the separability of VPCs. The unit-like behaviour of Present-Day English VPCs reflects the partial syntactically dependent status of particles (i.e. they do not project and are heads). In this respect, they differ from their Old English precursors, which I will show are syntactically independent elements and represent phrases (Chapter 4 and 5). Historically, then, English particles are argued to have undergone an increase in syntactic dependence, which is reflected by a loss of structure. Their development therefore can be said to involve grammaticalisation, which is often thought to involve loss of syntactic independence (cf. for example Fischer, Rosenbachand Stein 2000). In addition, grammaticalisation is often also accompanied by semantic bleaching, and we see just such a development with particles, whose meaning has become bleached over time.\(^1\) The ambiguity of particles between head and phrase is what distinguishes them from other words, which always project a phrase. Crucially, I do not assume that particles are inserted in the syntax either as optionally projecting words (Toivonen 2002, 2003), non-projecting words or projecting words (Neeleman 1994, 2002). Rather, I propose that they are hybrid in syntax.

My claim that particles optionally project a phrase raises the question when particles project and when they do not project. I propose that projection by the particle is subject to a structural economy principle, following proposals elsewhere in the literature (Speas 1995; 1998).

\(^1\) Semantic bleaching, first discussed by Gabelenz (1891), denotes a shift in meaning, often a shift to more abstract meanings. It is often linked to grammaticalisation processes (see for example Hopper and Traugott 1993).
Bresnan 2001; van Gelderen 2004; among others). My formulation of structural economy is given in (11).

(11) **Structural Economy Principle**
An element does not project, unless it is required to do so by syntactic, semantic and/or pragmatic factors.

The Structural Economy Principle, like other economy principles on projection proposed in the literature, states that it is more economical not to project, and that superfluous structure should therefore be avoided. Thus, the preference for particles is to be a head, rather than a phrase. Particles only project when there is syntactic, semantic and/or pragmatic evidence to the contrary.\(^2\) To give an example, a syntactic trigger for projecting a phrase is the presence of a modifier, (12).

(12) Pinocchio **blurted** the lie **right** out.

I assume that the presence of the adverbial modifier **right** forces the particle **out** to project, thus creating a specifier position for the modifier.

Optionality of projection of particles in combination with the Structural Economy Principle raises the question what forces the particle to project in V–Obj–Prt order. We have to assume the particle projects a phrase in these cases, because it occurs separated from the verb and is therefore a syntactically independent element. However, there is no apparent syntactic reason (such as the presence of a modifier) for projection, so normally the Structural Economy Principle would force it to be a head. I will argue that projection is triggered by the pragmatic structure of the utterance in these cases. The particle receives endfocus in this position, and I will propose that focus domains require a phrase, following a proposal by Lambrecht (1994). Thus, focus is another trigger for projection. I will discuss these focus requirements in more detail in §3.3.2.

At first blush, the Structural Economy Principle, according to which particles are heads by default, appears to run counter to my earlier claim that the head status of English particles reflects grammaticalisation. However, as I will show in Chapter 4, there was robust evidence for phrasal status of particles in Old English, which meant that the head analysis of particles, though the default by economy, was not adopted. The Structural Economy Principle thus provides insight into grammaticalisation, because the development from phrase to head is ascribed to economy considerations. This view is adopted from Van Gelderen (2004), who argues that grammaticalisation is driven by two economy principles, one of which is the Head Preference Principle (‘Be a head, rather than a phrase’), very

\(^2\) The Structural Economy Principle is in line with approaches to first language acquisition that argue that children gradually build up syntactic structures (‘structure building model’, see for example Radford 1995, 1996). On this view of L1 acquisition, children adopt a strategy in which they prefer simpler structures to more complex structures. As they acquire more lexical items, the structures will become more complex.
similar to the Structural Economy Principle adopted here. Her main argument is that
diachronic changes and grammaticalisation involve a development from phrase to head, not
vice versa. This is fully in line with much other work on grammaticalisation, minimalist (e.g.
Roberts and Roussou 2003; van Kemenade 2000) or otherwise (Lehmann 1995; Hopper
and Traugott 1993; among others) in which grammaticalisation is typically associated with
reduction in phonetic substance, morphosyntactic status, syntactic structure and semantic
content. The typical product of grammaticalisation is a functional head.

3.2 A lexical decomposition analysis of verb-particle combinations

Beside the paradox between syntax and morphology, Present-Day English VPCs also
involve a mismatch between syntax and semantics. The two word orders of English VPCs
do not reflect a semantic difference. All VPCs, transparent or non-transparent, show the
word order alternation. Moreover, English VPCs have a uniform event semantics.3 VPCs
express a complex event which consists of an activity or process, denoted by the verb, and
an endstate or –point, denoted by the particle, (13).

(13) The forester chopped the diseased trees down.

VPCs are typically change-of-state verbs, which are often resultative. Particles function as
secondary predicates, and predicate over the object, which is understood as their (semantic)
subject. There are several ways of analysing the semantics of VPCs. Van Kemenade and Los
(2003) (see also Los 2004) analyse the resultative event semantics of English VPCs in terms
of the Resultative Lexical Conceptual Structure (R-LCS) originally proposed by Spencer and
Zaretskaya (1998). In their analysis, the semantics of VPCs are represented as a lexical
construct (the R-LCS), which is mapped onto syntactic structure. The R-LCS template is
presented in (14a) and is illustrated with an example, (14b).

(14) a. [[CAUSE[ACT (x)], BECOME [W(y)]], v[V(x)]]

b. The backpacker dug out the splinter.
 [[CAUSE[ACT (the backpacker)], BECOME [out(the splinter)]], v[dig(the
 backpacker)]]
 ‘CAUSE the splinter to BECOME out BY digging’

A Lexical Conceptual Structure (LCS) (cf. Jackendoff 1990 for example) is a semantic level
of representation which encodes aspects of the meaning of, for example, a predicate. This is
done through semantic decomposition into various subparts (e.g. BECOME, BE, ACT)
which together constitute the meaning of the predicate. Thus, van Kemenade and Los
(2003), following Spencer and Zaretskaya (1998), show that resultative VPCs can be

3 With the exception of non-resultative VPCs containing the particles on, along, away, around/about. See §3.6 for discussion.
decomposed as indicated in the structures in (14). The R-LCS also captures resultative adjectives and prepositional phrases, such as *She rubbed her hair [AP dry]* and *He placed the web cam [PP on the monitor]*. The predicate W in the R-LCS template in (14a) expresses the endstate or point (i.e. the result) of the activity which will stop when the variable y (the splinter in (14b)) has reached the endpoint or state.† The meaning of the predicate W may vary from transparent to entirely non-transparent (van Kemenade and Los 2003: 90; see also Spencer and Zaretzkaya 1998: 12–13). The only requirement is that the predicate W conveys a change-of-state (Los 2004: 87). Thus, transparent as well as non-transparent particles may lexicalise the predicate W in the R-LCS template, since both express a change-of-state.

Van Kemenade and Los (2003) point out that the lexical subordination of the R-LCS expresses a mismatch between semantic and syntactic embedding of the predicates (cf. also Spencer and Zaretzkaya 1998). The particle is the core (primary) predicate semantically (W in the R-LCS), but acts as a secondary predicate in syntax. The verb is a ‘subordinated’ predicate (Spencer and Zaretzkaya 1998: 5) semantically, while acting as a primary predicate in syntax.

Another way of analysing the semantics of VPCs, which I will choose to adopt here, is to use a lexical decomposition approach, in which semantic decomposition is directly reflected in syntactic structure. Such an analysis proves particularly insightful for VPCs, because it combines the intuitions of the small clause analyses that particles are secondary predicates and that of complex predicate analyses that VPCs form a unit. One such lexical decomposition approach of Present-Day English VPCs is proposed by Ramchand and Svenonius (2002), who analyse the particle as the head of its own projection PrtP, which has a Result Phrase (RP) projection on top of it (cf. Chapter 2). Lexical decomposition analyses derive from the work of Hale and Keyser (1993), who on the basis of denominal verbs such as *shelve* and *saddle* propose a view in which syntactic trees are projected in the lexicon. This is based on the idea that the derivation of denominal verbs such as *shelve* and *saddle* is syntactic in nature and are formed by means of the head movement operation known as incorporation (Baker 1988). This derivation is thought to take place in the lexicon, and the head movement operation is called ‘conflation’. Following Larson’s (1988) proposal for a VP-shell structure, Hale and Keyser (1993) assume a rP projection on top of VP, which introduces the external argument (cf. Chomsky 1995a, voice in Kratzer 1996). In their analysis, structural relations are associated with semantic relations. Thus, the syntactic subordination relation between v and VP corresponds to causation. This lends support to the assumption that the agent argument is introduced in the rP, given that agent arguments are typically causers. In sum, Hale and Keyser’s approach provides insight into the correspondences between semantic and syntactic relations.

Baker (2003) proposes that transitive verbs can be lexically decomposed into three parts. Following Hale and Keyser (1993) and Chomsky (1995a) (see also Kratzer 1996), Baker assumes that agent arguments are introduced by a syntactically distinct element, v, which

† It should be noted that the R-LCS proposed for VPCs is not the conceptual structure of a lexical item, given my analysis of VPCs as syntactic rather than morphological constructs. It is the conceptual structure of what could be called a syntactic complex predicate.
lexicalises the CAUSE operator. He further assumes that theme arguments are introduced by V, which lexicalises the BE operator. The third part of the lexical decomposition is an AP projection headed by an abstract adjective and lexicalising a property-denoting argument. This gives the following decomposition structure of transitive verbs, (15a) (from Baker 2003: 81,83).

(15) a. \[x \text{ CAUSE } y \text{ BE } \text{ADJECTIVE to/of } z\]

b. \[I \text{ CAUSE } \text{the books BE } \text{DONATED to the library}]]

‘I donated the books to the library’

In (15), the property-denoting argument (i.e. the AP) is complex in that it has internal structure due to the presence of the PP to the library. The verb donate consists of a BE operator that establishes a semantic relation between the theme argument and the property-denoting argument. In turn, the CAUSE operator constitutes a semantic relation between the agent argument and the BE predication. The syntactic structure corresponding to (15) is given in (16) (from Baker 2003: 81).

(16)

The transitive verb is derived by combining the abstract adjectival head with V and \(v \) by means of conflaction, a process closely related to incorporation (cf. Hale and Keyser 1993). For Hale and Keyser (1993), conflaction is a process that takes place in the lexicon (l-syntax). Chomsky (1995a), on the other hand, takes conflaction and incorporation to be one and the same process, namely head movement in the syntax. Baker sees conflaction as syntactic incorporation as well, but he assumes that it takes place before the insertion of vocabulary items. The conflaction process serves to lexicalise the verb, which starts out as an abstract adjective and head-moves to pick up verbal properties in \(v \).

A lexical decomposition analysis captures the relationship between the syntax and the semantics of a construction and sits well with complex event semantics, which could
therefore successfully handle Present-Day English VPCs. Note that the R-LCS approach and the lexical decomposition approach involve the same semantic analysis, expressing the same semantic relations. The crucial difference between the two approaches lies in the place of the semantic component. The R-LCS is a lexical construct, but in lexical decomposition approaches the semantics is part of a syntactic construct.

Following Baker (2003), I propose that transitive verbs are lexically decomposed into a CAUSE operator, a BE operator and an abstract ‘property-denoting’ adjective. For (transitive) VPCs (not discussed by Baker 2003), I assume that the lexically decomposed verb (the abstract adjective) combines with a particle. This is illustrated in (17).

(17) a. The clumsy cook chopped his finger off.

\[
\begin{array}{c}
\text{The clumsy} \\
vP \\
\text{cook} \\
\text{CAUSE} \\
\text{his finger} \\
V' \\
\text{AP} \\
\text{BECOME} \\
\text{CHOPPED} \\
\text{Prt(P)} \\
\text{off}
\end{array}
\]

A first thing to note about the structural representation in (17) is the particle label, Prt(P). This label indicates the optionally projecting status of Present-Day English particles, as proposed in §3.1. A second thing to note is that the structure in (17) contains the operator BECOME in V, instead of Baker’s BE. This is because VPCs are change-of-state verbs, whose lexical decomposition contains a BECOME operator (cf. also the R-LCS). The VPC chopped off in (17a) not only denotes a change-of-state, it is resultative too. The resultative meaning is represented by the combination of the adjectival part of the verb CHOPPED and the particle off. The particle off indicates the endstate of the activity denoted by the verb, affecting the participant in the event, his finger. The internal structure of AP in (17b) is in fact analogous to the structure Baker (2003) proposes for resultative constructions. Thus, Baker proposes the lexical decomposition structure for a resultative adjectival construction in (18) (from Baker 2003: 221).

(18) a. I wiped the table clean.
The combination of the abstract adjectival head WIPE and the lexical adjective clean expresses the resulting state of the event. Baker (2003: 222) also notes that the internal structure of the AP represents Levin and Rappaport Hovav’s (1995) observation that the resultative adjective is a further specification of the result already present in the verb. According to Baker, this reflects the semi-productive, semi-lexicalised nature of resultative constructions, since “adjectives cannot be freely combined with plausible verbs” (Baker 2003: 222). Baker assumes that adjectives can only be predicated of an NP when it is the complement of a Pred head. He further assumes that such a Pred head is disguised on the surface and merges with the verb by the conflation process. In the trees that follow, I will therefore use the V label only.

The internal structure of the AP looks awkward from an X'-theoretic point of view, but Baker (2003: 202) points out that Bare Phrase Structure theory allows the combination of two like heads to form an AP. The AP thus results from the merger of the lexical adjective clean and the abstract adjectival WIPE. In the structure I proposed for VPCs in (17), the AP consists of an abstract adjective combined with a particle, the particle (phrase) being generated in the complement position of the abstract adjective.

In conclusion, the lexical decomposition analysis proposed in this section not only successfully links the semantic structure to the syntactic structure, it also combines the intuitions of complex predicate analyses and small clause analyses, which comprise that VPCs are units and that particles are syntactically autonomous, functioning as predicates, respectively. In addition, it has the welcome advantage of being able to account for the similarities between the various resultative constructions in English by assigning them the same structure. However, this does raise the question how the difference in syntactic distribution between VPCs and (other) resultative constructions is accounted for. VPCs have the unique characteristic of showing a word order alternation, but resultative constructions do not. Before dealing with this issue I will propose an analysis of the word order alternation of Present-Day English VPCs.
3.3 An account of the syntax of verb-particle combinations

In this section, I will show that the status of particles as optionally projecting heads (§3.1), in combination with the proposed lexical decomposition analysis (§3.2), accounts for the word order alternation that is typical of Present-Day English VPCs.

The separability of English particles indicates that they can occur as independent syntactic elements, which suggests an analysis in which particles project a phrase. Given the economy principle which favours heads above phrases, particles will only project when there is a reason to do so. A syntactic reason is when the particle is modified by an adverbial modifier like right. There is also a prosodic reason for the particle to project, namely when the particle is in a focus position. Particles, which are intrinsically endowed with primary stress, can receive focus when the speaker wants to emphasise the endresult of the event.

The typical focus position of particles is after the object, where it receives endfocus. The derivation of the V–Obj–Prt order is presented in (19).

\[
\begin{align*}
\text{The clumsy} & \quad \text{cook} \\
\text{CAUSE} & \quad \text{his finger} \\
\text{V} & \quad \text{AP} \\
\text{BECOME} & \quad \text{A} \quad \text{CHOPPED} \\
& \quad \text{PrtP} \quad \text{off}
\end{align*}
\]

The important elements of the V–Obj–Prt derivation illustrated in (19) include the structural status of the particle and the conflation process which lexicalises the verb. First of all, the particle is assumed to project in (19), as indicated by the label 'PrtP', which means that the less economical option is chosen. I will propose that the trigger for the particle to project has to do with the fact that it receives focus. This assumption is in line with Dehé’s (2002) findings, which show that the particle receives the main focus when it follows both the verb and the object. She further shows that focus assignment to the particle is regulated by the news value of the object. An object that is already known from the context will not receive focus and therefore will appear in between the verb and the particle, which means that the particle receives focus (and projects). By contrast, an object that contains new information will receive focus and hence will appear after the verb and the particle.

To conclude, the fact that the particle projects a phrase in (19) is regulated by prosodic reasons. The fact that this yields the order V–Obj–Prt follows from the lexical decomposition structure, which involves conflation of the abstract adjectival head to \(v \) to obtain verbal
properties. Since the particle is syntactically autonomous (it projects a phrase), the conflation process strands the particle and the conflated verb is in a position before the object, which in turn precedes the particle.

A well-known fact about the order V–Obj–Prt is that, while it is one of two word order options for full DP objects, it is in fact the only possible order for pronominal objects, (20).

(20) a. The slick macho man chatted her up.
 b. *The slick macho man chatted up her.

An additional quirk is that the order V–Prt–Obj (where 'Obj' is pronominal) is available when the pronominal object receives stress, (21) (from Fraser 1976: 17, his example (1:58)).

(21) a. I didn’t say to call up HER.
 b. Figure out THESE, not THOSE.
 c. Don’t mix up HIM, he’s already in a mess.

These facts receive a straightforward explanation under the analysis just proposed. The fact that unstressed pronominal objects only occur in the V–Obj–Prt order follows from their information structure (cf. Dehé). Pronouns express old information and therefore occur in a background, rather than a focus, position. When pronouns receive focus, however, they are able to occur in the V–Prt–Obj order, accounting for the examples in (21).

The only issue left unaddressed so far concerns the correlation between the focus domain and a syntactic phrase, which I have been assuming. Following Dehé (2002: 113-114), who builds on Lambrecht (1994), I suggest that a focus domain represents a syntactic domain which is always phrasal. According to Lambrecht (1994: 215) this is because information structure is

“... concerned with the 'pragmatic construal' of the relation between entities and states of affairs in given discourse situations, but not with the meaning of words or relations between the meaning of words. In the syntax, entities and states of affairs are expressed by phrasal categories, not by lexical items.” (Dehé 2002: 113-114)

Since the focus domain is phrasal in nature, particles occurring in the focus domain (i.e. the final position) are forced to project. The assumption about focus domains, derived from Lambrecht (1994) is formulated in the mapping principle in (22).

(22) Information structure–syntax mapping principle
 Focus maps onto a syntactic phrase.

The mapping principle predicts that a language user will always choose the phrase option when the particle is in final position, i.e. in the focus domain. Note that the phrase required by the focus domain need not be a particle phrase, it can be any phrase. When the object is focused it occurs inside the focus domain. In this case, the requirement that the focus
A LEXICAL DECOMPOSITION ANALYSIS

domain is phrasal is fulfilled by the object (nominal or pronominal). Thus, the distribution of VPCs with pronominal objects is an effect of a mapping principle between information structure and syntax and is not related to the type of object involved.

The unit-like behaviour of VPCs is apparent, among other things, from the order V–Prt–Obj, as is evident from the fact that the particle cannot be modified in this position. I will analyse particles in this position as heads and thus as elements which are syntactically dependent on the verb. The V–Prt–Obj order thus reflects the default situation in which particles do not project, in accordance with the Structural Economy Principle. Given the syntactic dependence of non-projecting particles, I propose they are forced to form a complex syntactic head with the lexically decomposed verb. The derivation is given in (23).

\[
\begin{align*}
\text{vP} & \quad \text{the clumsy} \\
\text{CAUSE} & \quad \text{cook} \\
\text{V} & \quad \text{his finger} \\
\text{BECOME} & \quad \text{V'} \\
\text{AP} & \quad \text{A} \\
\text{Prt} & \quad \text{off} \\
\text{A} & \quad \text{CHOPPED}
\end{align*}
\]

The merger of the abstract adjective and the non-projecting particle forms a complex syntactic head, which is headed by the adjective (the host of the particle). This calls to mind the Right-hand Head Rule (RHR), which states that the head of a morphologically complex word is the right-hand member of that word (Williams 1981). As shown in Chapter 2, morphological analyses (cf. Johnson 1991) have to assume that the verb or the particle can excorporate from the complex verb, which violates Lexical Integrity. Such analyses also violate the RHR, because the complex head consisting of the verb and the particle is left-headed. Under the analysis proposed here, this is never a problem, however, because the complex head represents a syntactic rather than a morphological construct, which means that it is not subject to morphological conditions such as the RHR.

Since the lexically decomposed verb and the particle form a complex syntactic head, the conflation process required to derive the lexical verb does not just target the abstract

\[\text{Note that the analysis of the V–Prt–Obj order as involving a non-projecting particle in combination with the assumption that particles are heads by default capture the fact that the V–Prt–Obj order is by far the most frequent order in Present-Day English (cf. also Dehé 2002).}\]
adjective, but the entire complex syntactic head. Thus, the verb and the particle move to \(V \) via \(V \) and the resulting word order is \(V\text{-Prt}\text{-Obj} \).

The process of syntactic complex head formation proposed above requires further comment. Analyses adhering to a syntactic view of word formation usually involve the head-movement operation incorporation (Baker 1988). Present-Day English VPCs, however, make a case against incorporation, because of the order of the elements. Incorporation involves left-adjunction of the incorporating head to the target head. The resulting complex head is right-headed, in accordance with the RHR. It is clear from the left-headedness of words formed from VPCs that they cannot involve incorporation.

I will suggest that it is possible for the abstract adjective and the particle to be combined by the operation Merge, in the spirit of Bare Phrase Structure theory (as formulated in Chomsky (1995a,b)). Following a suggestion made by Roeper (1999), I propose that the abstract adjective and the non-projecting particle undergo a process of rebracketing. Such head-rebracketing can be formalised by Chomsky’s (2004: 108,118) Set-Merge, which concatenates two items to form a single item (see Roeper 1999: 26). The relevant definitions of Set-Merge are presented in (24).

(24) “Applied to two objects \(\alpha \) and \(\beta \), Merge forms the new object \(\gamma \). What is \(\gamma \) must be constituted somehow from the two items \(\alpha \) and \(\beta \).… The simplest object constructed from \(\alpha \) and \(\beta \) is the set \(\{\alpha, \beta\} \), so we take \(\gamma \) to be at least this set.”

(Chomsky 1995a: 396)

(25) “[Merge] takes two elements \(\alpha \), \(\beta \) already constructed and creates a new one consisting of the two; in the simplest case \(\{\alpha, \beta\} \).”

(Chomsky 2004: 108)

Crucially, the process of rebracketing, although it is syntactic, is not an instance of incorporation. As pointed out above, incorporation yields leftward adjunction structures (Kayne 1994), and would derive \(\text{Prt-V} \) rather than \(\text{V-Prt} \). The rebracketing process is illustrated in (25).

(25) \[
\begin{align*}
[A \ \text{[Prt]} & \rightarrow \ [A \ \text{[Prt]}]]
\end{align*}
\]

As Roeper (1999: 26) points out, the rebracketing process is specific to English and I will suggest to particles as well. Converted VPCs in other Germanic languages all show the incorporation structure, i.e. \(\text{Prt-V} \). The motivation for the rebracketing process should therefore involve an explanation of why English particles apparently cannot be incorporated. Roeper (1999: 8) observes a sharp difference in argument structure between converted prefixed verbs and converted VPCs. Converted VPCs such as \([s \ knockdown] \) do not allow complements, e.g. “the knockdown of Fred. By contrast, converted prefixed verbs such as \([s \ upgrade] \) do allow a complement, as in “the upgrade of our tickets. Moreover, whereas converted VPCs express agentivity (e.g. “knockout”), no such notion is present with converted
prefixed verbs (e.g. *downpour*) (Roeper 1999: 26). Roeper analyses the structure of prefixed nouns and adjectives as specifier-head-complement structures, with the prefix generated in the specifier. He suggests that incorporation of particles is blocked because of the presence of an invisible agent (*–er*) in the specifier position of VPCs, which blocks movement of the particle.

One of the implications of the proposal that the Structural Economy Principle constrains projection is that other resultative predicates are predicted to occur as non-projecting heads as well whenever possible. However, the examples in (26) show that the order reflecting head status, i.e. V–Pred–Obj, is not available to resultative adjectives.

(26) a. That haddock drove (*crazy*) Rick (crazy).
 b. His exam results made (*happy*) his parents (happy).

The facts presented in (26) suggest that resultative adjectives, unlike particles, always project a phrase. Given that being a head is preferred by the Structural Economy Principle, an explanation must be found for the distribution shown in (26). What provides the trigger for the resultative adjectives in (26) to project a phrase? I suggest that this is related to the lexical content of adjectives versus that of particles. While adjectives have a fully specified lexical meaning, the meaning of particles is underspecified in the sense that they often reach their full-fledged meaning only in the context they appear in (e.g. which verb they combine with). Los (2004: 87) observes that the underspecified semantic content of particles is a result of their history. She notes that “they typically derive from spatial/directional prepositions or grammaticalized phrases like *away*” (Los 2004: 87) and that they therefore easily develop idiosyncratic meanings, in contrast with “the more meaningful adjectives”, which have a full-blown lexical meaning. Thus, the underspecified meaning of particles is related to the many non-transparent meanings of particles. The idea that the underspecified meaning of particles enables particles to grammaticalise, while adjectives with their full-blown lexical content are less prone to grammaticalise, is supported by a suggestion made by van Kemenade (2000). She notes that “elements that typically undergo grammaticalization seem to have in common that even at the onset of the grammaticalization story their lexical meaning is underspecified, their overall meaning strongly context-dependent” (van Kemenade 2000: 55).

Interestingly, there are several adjectives that do allow the word order alternation. This group includes *clean*, *open*, *free*, *loose*, *short* and some examples are given in (27).

(27) She rinsed (clean) her favourite mug (clean).
 She tore (open) the parcel (open).
 He cut (free) the hostages (free).
 They let (loose) the circus animals (loose).
 They cut (short) their holiday (short).

Crucially, each of the adjectives in (27) has developed new, non-transparent meanings and are clearly polysemous. Thus, *clean* no longer only means ‘not dirty’ (its transparent
meaning), but can also mean "honest" (a clean fight/contest), "moral" (clean living), ‘not rough’ (a clean cut), ‘complete’ (a clean break with the past), ‘nothing on’ (a clean sheet of paper). Similarly, open (not closed), free (not limited), loose (not fixed) and short (small in length, distance or height) have acquired non-transparent meanings. I suggest that the meaning of the adjectives in (27) has become underspecified as a result of the development of new meanings. The consequence of the acquired polysemy is that these adjectives reach their full lexical meaning only in the context they appear in. Their newly obtained underspecified meaning has made them eligible for grammaticalisation (and thus for a head analysis), along the lines presented above.7

To conclude, the account successfully captures the observation that the verb and the particle form a unit in the V–Prt–NP order and relates this to the dependent nature of particles when they do not project a phrase. At the same time, the analysis also accounts for the separability of the particle by assuming that the particle projects a phrase in certain syntactic and prosodic environments, as a result of which the particle acts as an independent syntactic element. The advantage over previously proposed analyses of English particles as optionally projecting heads (cf. Neeleman 1994, 2002; Zeller 2001a, 2002) is that in my analysis, the word order alternation is the result of the ambiguous nature of particles rather than of unmotivated case-licensing mechanisms. In addition, the proposed lexical decomposition structure, in which the lexically decomposed verb and the particle form a unit, allows the VPC to act as input to word formation processes.

3.4 Accounting for other selectional properties of verb-particle combinations

3.4.1 The structure of unaccusative and unergative verb-particle combinations

The discussion so far has concentrated on transitive VPCs. Recall from the overview in Chapter 1, however, that Present-Day English has a fair number of unaccusative and unergative VPCs. Examples are given in (28), repeated from Chapter 1.

(28) a. Her glasses fogged up when he entered the room.
 b. The parrot looked on as the cat challenged the chihuahua.

The unaccusative VPC fog up in (28a) takes a theme argument (her glasses) as its subject, which corresponds to the direct object in a transitive construction (cf. The heat fogged up her glasses). The theme argument of unaccusative verbs occurs in subject position because unaccusative verbs do not assign structural case. The structure I assume for unaccusative

6 All meanings and accompanying examples are from the Cambridge Advanced Learner's Dictionary Online, http://dictionary.cambridge.org/.
7 It is worth mentioning here a suggestion put forward by Goldberg and Jackendoff (2004: 558–559) about adjectives such as open, shut, free and clear. They tentatively interpret these adjectives as not only expressing a property but also a spatial path or configuration. The adjectives they mention are exactly the ones which show the word order alternation, suggesting that predicates with spatial path semantics are prone to grammaticalisation (cf. also Los 2005: 5).
VPCs lacks the \(\lambda \)P projection, reflecting the fact that unaccusative verbs do not assign an external thematic role, (29).8

(29)

\[\begin{array}{c}
\text{IP} \\
\text{her glasses} \\
\text{I} \\
\text{VP} \\
\text{her glasses} \\
\text{V'} \\
\text{V} \\
\text{BECOME} \\
\text{A} \\
\text{FOGGED} \\
\text{up} \\
\text{Pr}(P) \\
\end{array} \]

Compare the transitive form of unaccusatives, which is their causative counterpart, e.g. *The heat fogged up her glasses*. In contrast with the structure of unaccusatives, the structure of the transitive construction contains a \(\lambda \)P.

Unergative VPCs lack an internal argument at all levels of representation. The example in (30) is repeated from (28b).

(30) The parrot looked on as the cat challenged the chihuahua.

Following a suggestion made by Baker (2003: 85–86), I analyse unergative verbs as involving a \(V \) that does not create a thematic role for \(\Lambda \) (which it does with transitive verbs), which means that there is no theme argument. The structural representation of unergative verbs thus lacks the specifier position of VP.

8 This is largely in line with Hale and Keyser (1993), who argue that unaccusative verbs lack the \(\lambda \)P projection, and Baker (2003), who argues that \(\lambda \) does not lexicalise the CAUSE operator in the case of an unaccusative.
The 'absence' of SpecVP signals that the BE operator located in V does not create a thematic role.

The absence of a theme object implies that the particle in unergative VPCs does not function as a resultative predicate. Not only does Full Interpretation require a predicate to have a subject, there is simply no entity achieving a result. The subject is clearly not eligible as a theme (in contrast with unaccusative subjects), given the ungrammaticality of the paraphrase 'the particle is on'. Rather than expressing a result, these particles (such as *on* in \textit{The parrot looked on}) express the duration of the activity rather than the endpoint or --state.

The non-predicative nature of particles in unergative VPCs is in line with the observation that the argument structure of unergatives may be expanded by adding a reflexive object, deriving a resultative interpretation. An example is given in (32).

\begin{enumerate}
\item \textbf{(32)} \quad \textit{The Prime Minister's wife glammed herself up.}
\end{enumerate}

The resultative character signals that the particle in such cases is a predicate, whose subject is the reflexive object. This contrasts with particles in unergative VPCs without a reflexive object, (30), in which there is no object to function as a subject in a predication relation. Note, however, that the reflexive object in (32) refers to the same person denoted by the sentence's subject. The reflexive object is required by the Direct Object Restriction (DOR), which states that resultative predicates can only be predicated of objects (Levin and Rappaport Hovav 1995). While the particle *out* in (30) may be said to affect the subject, it cannot predicate over it, which is also apparent from the lack of a resultative interpretation. We may conclude from this, then, that unergative VPCs without reflexive objects are always non-resultative. Other examples are given in (33), repeated from Chapter 1.

\begin{enumerate}
\item \textbf{(33)} \quad a. \quad \textit{The inattentive audience chatted away throughout the entire play.}
\item \quad b. \quad \textit{The stray parrot tagged along.}
\end{enumerate}

Although such particles derive from resultative particles historically (Los 2004), they have developed a distinct semantics which involve expressing a movement in time (durative event) rather than a movement in space (telic event) (Los 2004: 96). As a consequence, they are no longer resultative.
Particles expressing duration have the curious property of blocking the argument of the verb. The examples in (34) (from Dehé et al. 2002: 14, their example (19); repeated from Chapter 1) illustrate this effect.

(34)
 a. fight (*battles/enemies) on, eat (*salad) on
 b. type (*the essay) away, chew (*the food) away

Los (2004: 95–96) mentions McIntyre’s (2001: 135) observation that it must be the particle that is responsible for the argument blocking, since replacement of the particle by another expression denoting a similar meaning yields a grammatical result, e.g. *the typed essays without stopping. McIntyre links the presence of a theme argument to the telicity (and thus resultative meaning) of the event. Particles can only telicise an event if there is an object present.

Since my study concentrates on resultative VPCs and does not investigate the historical development of non-resultative VPCs, I have nothing conclusive to offer as far as their syntactic structure is concerned. Earlier on in this section I suggested that the structure of unergative VPCs, which are non-resultative, lack the SpecVP position. A question that remains to be answered is whether non-resultative particles are structurally hybrid elements like resultative particles or not. This requires further investigation into the syntactic development of non-resultative VPCs. Given the different semantics the non-resultatives have developed, it is possible that non-resultative particles always project a phrase (like their Old English precursors) or have fully grammaticalised and are heads.

In conclusion, there is a difference in semantics between unergative VPCs (non-resultative) and transitive and unaccusative VPCs (resultative). I suggested that this is reflected in the syntactic structure by the absence of a SpecVP in the case of unergatives, since they lack an object. The presence of an object (in SpecVP) in transitive (and unaccusative) VPCs activates a resultative meaning.

3.4.2 Unselected objects

A well-known property of English particles is their transitivising effect on unergative verbs. This is illustrated by the examples in (35) (example (45a) is repeated from Chapter 1).

(35)
 a. The car ran down the garden gnome.
 b. Santa looked out a Christmas card.
 c. Who dreamed up that preposterous idea?

In each of these examples, the object is not part of the argument structure of the simplex verbs, which are all unergative. If these objects are not selected by the verb, the question is how they are licensed. Several authors (McIntyre 2004; Zeller 2001, 2002; Los 2004) have claimed that the particle is responsible for the selection of the object of VPCs. This is

9 I use the term unergative, rather than the more general intransitive, here, because unaccusative verbs have objects underlyingly and can therefore strictly speaking not be transitivised (cf. Los 2004: 86).
supported by the fact that the object of VPCs is sometimes of a different type than the
object of the simplex verb (e.g. *He bought a house* versus *He bought out the shareholders*, Los
2004: 85). The claim that particles select the object is captured by the R-LCS, in which the
particle is the primary predicate and the verb is in an adjunct position.

The selectional property of English particles is reflected in the syntactic structure of
VPCs as follows. The combination of the abstract adjective with a resultative particle forces
the presence of an object in SpecVP, because predicates (in this case the particle) need
subjects (by Full Interpretation). It is the particle that contributes the theme thematic role,
somewhat blurred in the syntactic structure because the particle shares its thematic role with
the abstract adjective. Ultimately, however, the theme thematic role is contributed by the
particle.

3.5 Verb-particle combinations in word formation processes

This section discusses how the proposed analysis accounts for the ability of English VPCs
to take part in word formation processes. The examples in (36), repeated from Chapter 1,
demonstrate some of the morphological possibilities of English VPCs.

(36) a. The escape to the country failed miserably because of a badly thought-out plan.
b. The slug in her lettuce was a bit of a turn-off.
c. Clubs have the right to refuse entrance to girls who are not tarted-up.
d. These determined lookers-on are not likely to leave before dawn.
e. His goal in life is to become a successful sucker-upper.
f. The switching off of the lights continues to fascinate the night watchman.
g. The burglar could not believe his luck when he discovered the bank was extremely breakinable.
h. The team showed great bouncebackability.

The form of the converted VPCs in (36) is remarkable in several ways. Whereas other
English complex words such as compounds (*ant-eater, heart-breaker*) are head-final, converted
VPCs preserve the syntactic element ordering, V–Prt, and are head-initial. The placement of
suffixes is notable because suffixes may attach to the verbal part (36c–d), to the entire VPC,
(36g), or may appear rather extravagantly on both the verb and the particle (reduplication),
(36e). It is clear from these examples that inflectional endings must appear on the verbal
part of the VPC, whereas a derivational suffix such as the agentive suffix –or can appear on
the verbal part or on the entire VPC. The derivational suffix –able usually attaches to the
total VPC.

As pointed out in Chapter 2, morphological analyses assuming that VPCs are
morphological objects face the problem of violating Lexical Integrity. In such analyses,
VPCs are inserted into the syntax as V’s and the separability facts can only be accounted for
by extracting the verb or the particle from the complex V, which violates Lexical Integrity.
In a syntactic analysis of VPCs, like the one proposed here, syntax can be the input to
adjectival and nominal word formation. This explains why the internal structure of converted VPCs adheres to the syntactic ordering of the verb and the particle.

The case of English VPCs provides convincing evidence against the strict division between morphology and syntax as proposed in the Lexicalist Hypothesis (Chomsky 1970). They show unit-like as well as phrasal behaviour and form the input to word-formation processes, as the examples in (36) show. In the analysis proposed in this chapter, their dual behaviour as units and phrases follows from the hybrid structural status of English particles. The phrasal properties of VPCs follow from the particle's possibility of projecting a phrase. The unit-like behaviour of VPCs is explained by the option of not projecting a phrase.

3.6 Conclusions

In this chapter, I proposed that Present-Day English particles are structurally hybrid elements in the sense that they are both minimal and maximal. In the analysis proposed, this boils down to optional projection of the particle (cf. Neeleman 1994, 2002; Zeller 2001a, 2002; Toivonen 2002, 2003). Whether or not a particle projects is argued to be regulated by the Structural Economy Principle, which favours less structure. A particle will only project when it is forced to do so by syntactic, semantic and/or pragmatic factors. The proposed structural hybridity of Present-Day English particles was shown to capture the unit-like as well as the phrasal behaviour. When a particle projects a phrase it acts as an independent syntactic element and can occur separated from the verb. By contrast, when a particle does not project it is a dependent element and has to form a syntactic complex with the verb.

It was further shown that the word order alternation of English VPCs falls out naturally from the structural nature of English particles, rather than from unmotivated case-licensing mechanisms as in various other proposals (cf. Chapter 2). The order V–Obj–Prt reflects a structure in which the particle projects a phrase. A phrasal particle is an independent element and occurs separated from the verb. The order V–Prt–Obj reflects a structure in which the particle does not project. Non-projecting particles must form a syntactic complex with the verb and therefore always surface adjacent to the verb.

It was shown that the syntactic, morphological and semantic properties of Present-Day English VPCs are best captured by a lexical decomposition structure (cf. Ramchand and Svenonius 2002 for an alternative lexical decomposition approach to VPCs). In the structure proposed here, the complex event meaning of VPCs is directly reflected in the syntactic structural representation. Baker's (2003) lexical decomposition of verbs is extended to Present-Day English VPCs, so that \(v \) lexicalises the CAUSE operator, \(V \) the BECOME operator, and there is an abstract adjective (the lexically decomposed verb) which combines with the particle. The analysis combines the intuitions of complex predicate analyses (VPCs are units) and those of small clause analyses (VPCs are separable, particles are predicates). The predicate status of particles is not captured in a small clause structure, which was shown to be problematic for various reasons in Chapter 2, but is reflected by the internal structure of the VP. The object is generated in SpecVP and is predicated over by the elements contained in the AP, namely the (abstract) verb and the particle. The lexical verb is derived by a process called conflation (cf. Hale and Keyser
1993), which essentially involves head-movement of the abstract adjective to V and i, where it picks up its verbal properties.

I pointed out in Chapter 2 that most of the existing analyses of Present-Day English VPCs have little to say about the semantics of VPCs. In addition, many of the analyses put forward in the literature posit case-licensing mechanisms which appear unmotivated and unnecessarily complex. The advantage of the analysis proposed here is that it accounts for the syntactic, morphological and semantic properties of VPCs. On top of this, the syntactic separability and the unit-like behaviour of VPCs is said to follow from the structural nature of the particle rather than from case-requirements.
Part II The origins of the verb-particle combination
Introduction

The Present-Day English verb-particle combination (VPC) can be traced back to the Old English period (roughly 500–1100 A.D.), in which particles co-existed with prefixes. The basic position of Old English particles was preverbal, dictated by the OV grammar of Old English. This part of the thesis studies the syntax of (late) Old English particles and proposes a formal syntactic analysis of Old English separable complex verbs (SCVs). This will not only increase our insight into the Old English particle system, it will also enhance our understanding of the synchronic properties of Present-Day English VPCs.

Chapter 4 presents a detailed description of Old English particles and SCVs and addresses the following problems:

- How do we recognise a ‘particle’?
- The structural status of Old English particles. What is a particle in structural terms?
- The syntactic position of Old English particles with respect to finite and non-finite verbs.

Chapter 5 proposes a formal syntactic analysis of Old English SCVs, which is cast in a Kaynian framework, treating underlying VO order as universal. A crucial ingredient of the analysis, which accounts for the syntactic distribution of Old English particles in a principled way, is the structural analysis of Old English particles adopted in Chapter 4.
4 Particles and prefixes in late Old English

This chapter is concerned with the syntax of particles in (late) Old English. The Old English particles are characterised by their syntactic separability and their transparent semantics. This contrasts with the properties of coexisting prefixes, which seem to be morphologically rather than syntactically defined and whose meaning is abstract and, in varying degrees, elusive. After a detailed discussion of both the prefix and the particle system, I will focus on the syntax of Old English particles. I will show that Old English particles are amenable to an analysis in which they are secondary predicates, representing phrases (cf. Fischer et al 2000; van Kemenade and Los 2003). In addition, I will investigate the distribution of Old English particles. I will do so on the basis of previous literature on this topic as well as on the basis of the data collected from the York-Toronto-Helsinki Parsed Corpus of Old English Prose (YCOE; Taylor, Warner, Pintzuk and Beths 2003) using CorpusSearch (Randall 2003). The data was collected from texts from the O3 period, which is the most substantial and most reliable of the two late Old English periods (O3 and O4).

The organisation of this chapter is as follows: §4.1 considers the historical background of English particles, and discusses Sanskrit and Gothic preverbs. §4.2 focuses on the prefix systems of Old English, against the background of the overall syntax of the period (§4.2.1). I discuss the Inseparable Complex Verbs (ICVs) first (§4.2.2), proposing a structural and semantic analysis of prefixes and ICVs, and providing a detailed description of the prefixes that exist in Old English. I also review existing literature on ICVs. I then consider the Separable Complex Verbs (SCVs) (§4.2.3), again proposing a structural and semantic analysis, discussing in detail the particles of Old English and reviewing existing literature on the topic. §4.3 presents a corpus study of Old English particles, which sheds light on the exact syntactic distribution of particles by investigating their position with respect to finite and non-finite verbs. §4.4 contains a summary of the findings presented in this chapter.

4.1 The historical background of English particles

The particles and prefixes of Old English are by no means an isolated phenomenon. Similar preverbs, i.e. “morphemes that appear in front of a verb, and which form a close semantic unit with the verb” (Booij and van Kemenade 2003: 1), are attested in many other languages. Preverbs are found as far back as Indo-European. Vedic Sanskrit (c. 1500 B.C.) for example, has preverbs which, like Old English particles, were freely separable from the verb, their distribution similar to that of adverbs (Hiltunen 1983: 38, quoting Hopper 1975: 40; see also Booij and van Kemenade 2003: 2). Watkins (1964: 1037) observes that, depending on the syntactic context, preverbs are like prepositions, adverbs or predicates. He identifies two basic preverb (P) positions, which are illustrated by the examples in (1) (from Hopper 1975: 40; direct glosses are mine).
In (1a), the preverb occurs in sentence-final position. In (1b), the preverb occurs in sentence-initial position and has been separated from the verb. Sanskrit preverbs in immediately preverbal position are accented when they occur in main clauses, but deaccented when they occur in subordinate clauses. In the latter environment, it is the verb that is accented (cf. Watkins 1964, mentioned in Booij and van Kemenade 2003: 2–3). The stress shift is seen as resulting from ‘univerbation’ (Watkins 1964), which results in a syntactic unit (comprising the preverb and the verb) (Booij and van Kemenade 2003: 3). Kuryłowicz (1964), mentioned in Hiltunen (1983: 39), notes that preverbs could develop into prefixes, following a grammaticalisation path (cf. also Booij and van Kemenade 2003: 3).

A similar phenomenon is found in Gothic, the oldest extant Germanic language as attested in Wulfila’s 4th century translation of the Bible (from the Greek Vorlage). Many Gothic preverbs have been reduced to prefixes, featuring in inseparable complex verbs (henceforth ICVs). A notable difference between Gothic prefixes and the Old English (as well as Dutch and German) prefixes is that a Gothic prefix “may be separated from the verbal stem by other morphemes” (van Kemenade and Los 2003: 97; see also Hiltunen 1983: 40-41). Relevant examples with the prefix ga- are given in (2) (from van Kemenade and Los 2003: 98).

(2) a. \[ga- \, u- \, laubeis \]
 \[GA-\, INT.-\, leave2SG \]
 ‘do you believe’
 (John 9:35)

 b. \[ga- \, þau- \, laubideiþ \]
 \[GA-\, then-\, leavePRET.SUBJ.2PL \]
 ‘you then would believe’
 (John 5:46)

The interrogative particle \(u \) in (2a) and the particle \(þau \) in (2b) almost invariably appear in the second position and interrupt the adjacency of the prefix and the verbal stem. Van Kemenade and Los (2003: 98) stress that despite these facts Gothic prefixes are not part of separable complex verbs (henceforth SCVs) as they are always bound morphemes. They add that data as in (2) reflect the full word status of Gothic prefixes in earlier stages (van Kemenade and Los 2003: 98) and that the development of the Gothic preverbs can be
analysed as a reanalysis of SCV to ICV. They note that a development from SCV to ICV is less likely for the continental West-Germanic languages, because the particle of SCVs is autonomous (Van Kemenade and Los 2003: 99). This is evident from their separability (e.g. by V2) and from their primary stress.

An interesting observation is that some prefixes, in particular *inn* and *ut*, are frequently doubled (van Kemenade and Los 2003: 101). An example is presented in (5), from van Kemenade and Los (2003: 101).

(5) þanuh modags warþ jah ni wilda inn-gaggan, iþ atta
then – and angry became and not wished in-go, but father
is us-gaggands ut bad ina.
his out-coming out asked him
(Luke15:28)
ὠργίσϑη δὲ καὶ οὐκ ἠϑελεν εἰσελϑεῖν. ὁ δὲ πατὴρ αὐτοῦ ἐξελϑὼν
παρεκάλει αὐτόν.
'But he was angry and refused to go in. His father, coming out, pleaded with him.'

In the example in (5), the particle *ut* co-occurs with the prefix *us*- This doubling phenomenon is also found in Old English (see §4.2.3.2), showing that the same mechanisms are at work in the development of preverbs in two different languages and at different points in time. Van Kemenade and Los (2003: 101) analyse these doublings as a reinforcing mechanism and argue that the particle *ut* has taken over the predicate function of the prefix *us*- This suggests that something very similar to the functional equivalence of the Old English SCVs and ICVs as (grammaticalised) secondary predicates was already found in Gothic.

4.2 Particles and prefixes in Old English

This section discusses the prefixes (§4.2.2) and particles (§4.2.3) of Old English. Distinguishing between prefixes and particles sometimes proves a difficult task, in part because of functional similarities with prepositions and adverbs (cf. Mitchell 1978, 1985). I will present syntactic and semantic criteria that help determine their status. §4.2.1 treats some main aspects of Old English syntax, providing a background for the discussion of the Old English prefix and particle systems.

4.2.1 Old English syntax

4.2.1.1 Word order

A number of the relevant features of Old English syntax are similar to those of its continental West-Germanic sisters Dutch and German. Like Modern Dutch and German and unlike Present-Day English, Old English has many OV word orders, beside VO orders.
Some of the freer word order possibilities of Old English compared to those of Present-Day English become apparent when distinguishing the position of the finite verb from the position of the non-finite verb. The Old English version of the V2 phenomenon is of particular background relevance to the status of particles in Old English. Old English particles were stranded by V2, indicating that they were syntactically autonomous elements. Fischer, Van Kemenade, Koopman and Van der Wurff (2000: 140) point out that the position of finite verbs, but not that of non-finite verbs, is partly determined by clause type. In main clauses, finite verbs move to the second position of the clause, (6a), and invert with the nominal subject when the clause is introduced by question words, negatives or topics, (6b). Both examples are taken from Fischer et al. (2000: 49), their examples (32) and (33a).

(6) a. We habbað hwæðere þa bysne on halgum bocum ‘We have, nevertheless, the examples in holy books’ (ÆCHom I, 31.474.33)

b. Hwi wolde God swa lytles þinges him forwyrnan ‘Why would God deny him such a small thing?’ (ÆCHom I, 1.14.2)

While verb fronting occurs in subordinate clauses, too, it is far less frequent than in main clauses (cf. Pintzuk 1991; Fischer et al. 2000). The example in (7) is from Fischer et al. (2000: 50), their example (36b).

(7) þæt we ealle sculon ænne geleafan habban ‘that we all must have one faith’ (Or 5.14.131.13)

The example shows that the fronted verb does not invert with the subject in subordinate clauses, unlike fronted verbs in main clauses.

With respect to non-finite verbs, Fischer et al. (2000: 51) observe that nominal objects and PPs can occur on either side of the non-finite verb, independent of the clause type involved. This is illustrated by the examples in (8), from Fischer et al. (2000: 51), their examples (39a–d).

(8) a. þes mann nolde cyðan ðam synigendum heora ‘this man would not make known to the sinning their sins’ (ÆCHom II, 22.194.148)
In the main clause in (8a), the non-finite verb *cyðan* ‘make known’ is followed by two objects, *ðam syngigendum* ‘the sinning’ and *heora synna* ‘their sins’. The non-finite verb *bodian* ‘preach’ in the main clause in (8b) is preceded by the indirect object *mannum* ‘people’ and followed by the direct object *þone soðan geleafan* ‘the true faith’. In (8c), the non-finite verb *geearnian* ‘earn’ features in a subordinate clause and is followed by an object *ece myrhðe* ‘eternal joy’ and a PP *æt ðam soðan Gode* ‘from the true God’. The subordinate clause in (8d) contains a non-finite verb (*geoffrian* ‘offer’) which is preceded by the indirect object *urum godum* ‘our gods’ and followed by a direct object *ðancwurðe onsægednysse* ‘grateful sacrifice’.

The examples presented in this section show that there is a good deal of variation between OV and VO word orders in Old English. The word order asymmetry between main and subordinate clauses is largely due to verb fronting, although verb fronting is not entirely absent from subordinate clauses (Pintzuk 1991, 1999).

4.2.1.2 Verb-Second

Old English has a version of the verb-second (V2) constraint characteristic of Germanic syntax, by which a finite verb is fronted to the second position in the surface string. V2 is largely a main clause phenomenon, but it is also operative in subordinate clauses in some Germanic languages. Languages such as German and Dutch, for example, allow finite verb movement in main clauses only and are referred to as asymmetric V2 languages (Schwartz and Vikner 1989). Examples from Dutch are given in (9).

(9)

a. Gisteren *heeft* Jan de tango gedanst.
yesterday *has* Jan the tango danced
‘Yesterday, Jan danced the tango.’
In asymmetric V2 languages like German and Dutch the finite verb is thought to move to C.

As discussed by Fischer et al. (2000: 111–113), there are two types of V2 in subordinate clauses. Frisian and Danish display the first type of V2, which is found in the subordinate clause complement of ‘bridge verbs’ (like say, think). In these subordinate clauses, a V2 structure follows a that-complementiser, a structure which has been analysed as CP recursion (Fischer et al. 2000: 112). The Danish examples in (10) are taken from Fischer et al. (2000: 112).

(10) a. Vi ved at Bo har ikke læst denne bog.
 we know that Bo has not read this book
 ‘We know that Bo has not read this book.’

b. Vi ved at denne bog har Bo ikke læst.
 we know that this book has Bo not read
 ‘We know that Bo has not read this book.’

c. *Vi beklag at denne bog har Bo ikke læst.
 we regret that the book has Bo not read
 ‘We regret that Bo has not read the book.’

The subordinate clauses in examples like these can be understood as “quoted main clauses” (Fischer et al. 2000: 112). Since V2 is also attested in subordinate clauses, V2 clauses are often referred to as root clauses, a term that comprises main clauses as well as subordinate clauses of the type seen in the Danish examples in (10). Non-V2 clauses are referred to as non-root clauses.

The second type of V2 is attested in Yiddish and Icelandic (Yiddish: Diesing 1990; Santorini 1992, 1995; Icelandic: Rögnvaldson and Thráinnsson 1990). These languages allow V2 in main as well as in subordinate clauses, (11), and are referred to as symmetric V2 languages (Schwartz and Vikner 1989). Crucially, the position preceding the finite verb is not restricted to the subject. The Yiddish examples in (11a–b) are taken from Diesing (1990: 42), her example (3). The Icelandic examples in (11c–d) are taken from Fischer et al. (2000: 112), in turn taken from Rögnvaldson and Thráinnsson (1990).

(11) a. Max shikt avek dos bukh.
 Max sends away the book
 ‘Max sends away the book.’
b. Avrom gloybt az Max shikt avek dos bukh.
Avrom believes that Max sends away the book
‘Avrom believes that Max sends away the book.’

c. Jón efast um að á morgun fari María snemma á fatur.
John doubts that tomorrow get Mary early up
‘John doubts that Mary will get up early tomorrow.’

d. Jón harmar að þessa bók skulli ég hafa lesið.
John regrets that this book shall I have read
‘John regrets that I have read this book.’

The XP–Vf–Subj character of these languages is illustrated by the Icelandic examples in (11c–d). In (11c), the finite verb fari ‘get’ is preceded by the adverb á morgun ‘tomorrow’ and in (11d) the finite verb skulli ‘shall’ is preceded by the object þessa bók ‘this book’. The fact that V2 takes place even when there is a complementiser present indicates that finite verb movement is to I in these languages (Fischer et al. 2000: 113, citing Rögnvaldsson and Thráinsson 1990).1

In Old English, there is a clear word order asymmetry between main and subordinate clauses with respect to the position of the finite verb, but finite verb movement is not completely absent from subordinate clauses (Pintzuk 1991, 1999). Despite the occurrence of verb movement in main clauses as well as subordinate clauses, Old English is not a symmetric V2 language like Yiddish and Icelandic, because verb movement in Old English subordinate clauses is different from V2 (there are no preverbal non-nominative elements in Old English subordinate clauses, except in unaccusative constructions, cf. van Kemenade 1997a) (cf. Fischer et al. 2000: 109). The Old English situation is illustrated by the examples in (12). Example (12b) is taken from van Kemenade (1987: 16), her example (2a).

(12) a. Se Hælend wearð þa gelomlice ætiwed his leornung-cnihtum
the Lord was then frequently shown his disciples
‘The Lord then frequently appeared to his disciples’
(ECHom I, 15.220.21)

b. þæt ic þas boc of Lede num gereorde to Engliscre spræce
that I this book from Latin language to English tongue awende
translate
‘that I translate this book from the Latin language to the English tongue’
(AHth, I, pref, 6)

In the main clause in (12a), the finite verb wearð ‘was’ has moved to the second position in the clause, resulting in VO word order. In the example in (12b), a subordinate clause, the

1 This view has been opposed by Vikner (1995), who argues that all V2 movement is to C (Fischer et al. 2000: 113).
finite verb *awende* ‘translate’ does not move and stays in its original position, yielding OV word order.

As discussed by van Kemenade (1987, 1997a,b), there are some quirks to the asymmetric V2 displayed by Old English. While Old English shows true asymmetric V2 in wh-initial, negative-initial and *þa*-initial contexts (the finite verb moves to C; cf. Fischer et al. 2000, Chapter 4), the type of V2 found in topic-initial contexts is special, because it involves a type of verb movement that is also found in subordinate contexts. A further intricacy of Old English topic-initial clauses is that the finite verb precedes nominal subjects, but follows pronominal objects. The three main V2 patterns along with the structural representation proposed by Fischer et al. (2000: 126) are given in (13) and (14), taken from Fischer et al. (2000: 126–127).

(13) a. Wh-element (or *ne* or *þa*)–Vf–Subject …
 b. Topic–Vf–Subject NP …
 c. Topic–Pronoun–Vf …

(14) \[CP C [TP F [np Neg [TP T [VP V]]]] \]

I follow Fischer et al. (2000: 127–128) in assuming that the finite verb moves to C in V2 clauses displaying pattern (13a) and to F (a position lower than C) in V2 clauses with pattern (13b–c). The latter type of verb movement may occur in subordinate clauses as well. The nominal subject in (13b) occupies SpecTP, the pronominal object in (13c) occupies SpecFP.

4.2.2 Inseparable Complex Verbs (ICVs) in Old English

Unlike Present-Day English, but like Modern Dutch and German, Old English has a large number of inseparable complex verbs (ICVs), which co-exist with the separable complex verbs (SCVs), the precursors of the Present-Day English verb-particle combination (VPC). In this section, I provide a detailed description of the Old English ICVs. In §4.2.2.1, I discuss the properties of ICVs and propose a structural and semantic analysis for Old English prefixes. In the light of this analysis, I then discuss the prefixes as they existed in Old English (§4.2.2.2). §4.2.2.3 reviews Hiltunen’s (1983) study of ICVs in Old English.

4.2.2.1 Analysing the properties of Old English ICVs

In this section I will discuss the morphological, semantic and stress properties of Old English ICVs.

Morphology

Unlike their Gothic preverb predecessors (cf. §4.1), Old English prefixes cannot be separated from the verbal stem by other morphemes. Their inseparability distinguishes
them from the Old English particles, which are syntactically independent elements (see §4.2.3 for discussion). Their status as bound morphemes is illustrated by examples in which the non-finite ICV is part of a to-infinitive, (15).

(15) & wyrcan & fela tæcn & wunran to bekacecnenne
and performed many marvels and miracles to deceive mankind.
‘and performed many miracles to deceive mankind’
(coprefeth1, ÆCHom 1 [Pref]:175.62.10)

The infinitival marker to ‘to’ cannot detach a prefix from its verb and precedes the entire ICV. By contrast, the infinitival marker always separates a particle and the verb (see §4.2.3.1).

The bound morpheme status of prefixes also prevents them from being stranded by finite verb movement, (16).

(16) Nu alysde hi God of 丹麦 laðum þeowte,
at this time released them God of the loathsome slavery
‘At this time God freed them of the loathsome slavery’
(coaelhom, ÆHom 21:115.3138)

As the example in (16) shows, V2 movement affects the entire ICV, not just the verbal part as is the case with SCVs (see §4.2.3.1).

Unlike Old English particles, Old English prefixes cannot occur as syntactically independent elements and are bound morphemes. This may suggest that particles and prefixes are structurally different and that SCVs should be analysed as syntactic constructs, whereas ICVs should be analysed as morphological constructs. At the same time, however, their functional equivalence supports the view that they should receive the same analysis. Since both ICVs and SCVs are change-of-state predicates, in which the prefix and particle respectively denote the endstate or –point of the activity, both prefixes and particles are in principle amenable to an analysis as secondary predicates (cf. Hoekstra, Lansu and Westerduin 1987 for Dutch be-). This is a controversial theoretical issue as it involves, in the case of prefixes, postulating syntactic decomposition below word level. While this approach is also part and parcel of my analysis of the verb-particle combination in both historical and Present-Day English, the evidence for it is much less clear-cut for the prefixes in Old English. It seems likely that, at some point in history, prefixes were able to occur independently (cf. the Gothic preverbs) and have been grammaticalised to prefixes, retaining some of their older secondary predicate effects. Unfortunately, however, the only textual evidence from before the Old English period is from Gothic, and a detailed consideration of this evidence is beyond the scope of this work. Although there is a definite theoretical appeal in treating prefixes and particles in the same way, I will in the absence of
substantial evidence consider ICVs as lexical constructs on the basis of the morphological
dependence of the prefix on the verb.

Semantics

Old English prefixes have a range of meanings (see §4.2.2.2), but at the core they share a
common semantics. Not only are the meanings of the prefixes invariably abstract, prefixes
typically denote an endstate and express the total affectedness of the object. Thus, ICVs are
change-of-state predicates. The examples in (18) illustrate this nicely.

(18) a. … *beclypete* seo myltestre þæt clæne mađen
 ‘… the prostitute embraced the innocent maiden’
 (coaelive, ELIS [Eugenia]:168.293)

 b. Witodlice ic dyde þæt þa gewurdon cristene ealle þe in
 truly I did that they became christians all who in
 ðam cwarterne *be-clysode* wæron,
 the prison in-shut were
 ‘Truly, I brought about that they who were shut up in prison all became
 christians.’
 (coaelhom, ÆHom 24:170.3871)

 c. Ða þry oðre godspelleras *a-writan* heora godspell be
 the three other evangelists down-wrote their gospel about
 Crístes menniscynsse,
 Christ’s humanity
 ‘The three other evangelists wrote down their gospel about Christ’s
 humanity’
 (coaelhom, ÆHom 1:17.7)

In (18a), the prefix *be-* in *beclypete* ‘embraced’ expresses the total affectedness of the object.
The same is true for *be-* in *beclysode* ‘shut in’ in (18b). This change-of-state meaning is also
found in Dutch ICVs with *be-* such as *bevatten* ‘completely understand/grasp’ (literally
‘begrasp’). In (18c), the prefix *a-* as in *a-writan* ‘to write down’ expresses the endstate of the
action denoted by the verb. All the examples in (18) clearly have a resultative meaning, but
this is not the case with all ICVs. ICVs with the transitivising prefix *ge-* as in *gedician* ‘to
make a dike or bank’ for example, are less obviously resultative, but nevertheless express a
change-of-state, totally affecting the object.

Although the semantics of ICVs and SCVs differ with respect to transparency, they have
in common a change-of-state semantics (cf. van Kemenade and Los 2003). Both prefixes
and particles function as a secondary predicate denoting the endstate or –point of the action
expressed by the verb (see §4.2.3.1 for a discussion of the semantics of SCVs). This
common semantic core is observable in the phenomenon of ‘prefix doubling’. When the
meaning of prefixes had become too abstract to convey the intended meaning, a particle
was added to reinforce the change-of-state semantics (see §4.2.3.2 for more discussion and examples of prefix doubling). The common change-of-state semantics also meant that there was a certain degree of functional overlap between the two prefix systems, which is likely to have contributed to the decay of the prefix system (see §4.2.3.1 and Chapter 6, §6.1 for more discussion on this).

Stress

Old English prefixes, like their Modern Dutch and German counterparts, are unstressed. In an ICV, stress falls on the verb stem rather than on the prefix. Evidence for this comes from verse, in which prefixes occur in unstressed positions. The example from the alliterative Beowulf in (21) provides an illustration. In the example, the onset of stressed syllables is underlined.

(21)
\[\text{æs þæt } \text{beorht} \text{e bold /to-brocn swðe,}\]
\[\text{was that bright house in pieces-broken much}\]
\[\text{eal įnneward / įnþendum įnest,}\]
\[\text{all within iron-chains firm}\]
\[\text{‘That bright house, all made firm within by iron chains, was severely wrecked.’}\]
\[\text{(Beowulf, 997–998)}\]

Stress in Beowulf falls on alliterating syllables, so in (21), beorht, bold and –brocn are stressed and the prefix to-brocn is unstressed.

4.2.2.2 The Old English prefixes

The group of Old English prefixes includes aspectual (or temporal) prefixes such as be- and ge- and spatial prefixes, such as a-, ut-, for-, of-, to-, on-, þurh-þurh-, þymb-, wið-/wiþ-. I will discuss these prefixes in turn in the light of the discussion of the properties of ICVs in the previous section.

a-

The prefix a- is one of the most frequent prefixes in Old English and derives from æ ‘out’ (cf. Kluge 1901: 476; Lehmann 1986). According to Clark Hall (1960), the original meaning of a- is forth or away, but in Old English it often merely intensifies the meaning of the verb (cf. also Hiltunen 1983: 48). The meaning forth/away is discernible in the following examples.

(22)
\[\text{ablawan ‘to blow away’, acwinan ‘to dwindle away’, ahweorfan ‘to turn away’},\]
\[\text{ascinan ‘to flash or shine forth’, astreccan ‘to stretch forth’}\]
In some cases, however, the prefix *a-* no longer contributes the meaning *away* to the verb and even appears to add no meaning at all, as in *aberan* ‘to bear, carry’, corresponding to *beran* ‘to bear, carry’ (Hiltunen 1983: 48). This is also the case with the two ICVs containing *a-* in (23).

(23) þa **asende** he þone ylcan sunu to ðisum life to ure
 then sent he the same son to this life to our
 alysdynsse for ðan þe Adam se forma mann **agylte** wið god
 redemption because Adam the first man sinned against God
 ‘then he sent the same son to this life to redeem us, because Adam, the first
 man, had sinned against God’
 (ocathom2, ÆCHom II, 1:3.11.12)

In this example, it is not clear what meaning, if any, *a-* in *asende* ‘sent’ and *agylte* ‘sinned’ adds to the verb. As noted by Hiltunen, “it may add a connotation of intensity to the verb, but does not always appear to alter the signific ation at all…” (Hiltunen 1983: 48). The same holds for some Present-Day English VPCs in which the particle does not appear to add any semantic content to that of the verb and merely gives expressive force to the verb’s meaning, e.g. *open up* (see Chapter 1). The prefix *a-* sometimes represents a diminished form of the prefixes *on-* or *ymb-* (Clark Hall 1960).

(24) **ahitan/onbitan** ‘taste, partake of, consume, feed upon’, **ofindan/onfindan** ‘to find out, discover’

The observation that the prefix *a-* has little semantic content is further supported by cases of prefix doubling, in which a particle is added on to the prefix *a-* to reinforce the meaning of the prefix (cf. §4.2.3.2). Despite the abstract meaning of *a*, it denotes an endstate and lexicalises the predicate W in the R-LCS discussed in §4.2.2.1.

be-

Another frequent prefix in Old English is *be-*. Its original meaning ‘about’ (OED) became blurred by the development of various other meanings. These are illustrated with an example in (25).

(25) a. **Intensification of the meaning of the verb**
 e.g. **besettan** ‘to put, place’, **beswincan** ‘to toil, exert oneself’

b. **Transitivises the verb**
 e.g. **besceawian** ‘survey, consider, watch’, **bewacian** ‘to watch, guard’

c. **Privative meaning**
 e.g. **beceorfan** ‘to cut, cut off, separate’, **bedælan** ‘to deprive, strip, bereave of’

d. **No change in meaning**
 e.g. **becuman** ‘to come, approach, arrive, enter’, **befæsten** ‘to fasten, fix, establish’
The prefix be- often has a transitivising effect and has cognates in Modern Dutch, e.g. bedenken 'think up, invent', and Modern German, e.g. befahren 'ride on' (cf. Hoekstra, Lansu and Westerduin (1987) and Booij (1992) on Dutch be-). An Old English example is given in (26).

(26) Swa swa þære sunnan leohht be-scinð þæne blindan …
just as the sun's light on-shines the blind …
‘Just as the sun’s light shines upon the blind ones …’
(coaelhom, ÆHom 1:294.157)

In (26), be- clearly expresses the total affectedness of the object þære blindan ‘the blind ones’. The ICV bescinan ‘to shine on’ has a change-of-state meaning and lexicalises the R-LCS. Visser (1963–1973: 134–135) notes that some verbs, after losing their transitivising prefix be-, stayed transitive, which Visser suggests might have been due to a “subconscious tendency to make up for the loss”. The situation in English contrasts with that in other Germanic languages, such as Dutch, German and Swedish, which still have many verbs with be-. In these languages, the corresponding verbs without be- “are hardly ever used transitively” (Visser 1963–1973: 135).

Despite having largely dropped into disuse, be- is still “a living element” (OED) in Present-Day English in some of the senses listed in (25). Thus, be- can be used to form verbs with an intensive meaning (‘thoroughly’), as in bemuse, bewelcome (OED sense 2). It can also be used to form transitive verbs from nouns, as in befriend (OED sense 6), and to form participial adjectives, as in belittle (OED sense 7). Van Kemenade and Los (2003: 94) note that “English be- has a very limited productive use, mainly in past participles: bespectacled, becardiganed.”

for-/fore-

The prefix for-/fore- is sometimes hard to distinguish from the preposition for, but is unrelated to it (Clark Hall 1960). Examples are given in (27).

(27) a. and se brostignenda lichama, þeah þe he bo gehæled, bido
and the decaying body, although he is healed, is
mid deape for-numen and to duste awend
with death away-taken and to dust changed
‘and although he is healed, the decaying body is taken away by death and turned into dust’
(coaelhom, ÆHom 2: 105.300)

b. and hu Nonius wes forcweden for þam gyldenan scridwæne
and how Nonius was off-spoken before the golden chariot
‘and how Nonius was spoken ill of before the golden chariot’
(coboeth, BoHead: 27.32)
Like be-, it may intensify the meaning of the verb (forhæman ‘to condemn, sentence, doom’, forbæcan ‘to break in pieces’), it may transitivise the verb (forægan ‘to overlook, neglect, scorn’), it may denote loss or deprivation (privative meaning, foræihman ‘to take away, deprive of’) or a pejorative meaning (foræwæcan ‘to speak ill of, abuse, revile’). For Fraser (1975), mentioned by Hiltunen (1983: 49), a semantic distinction such as the one made above is too subtle for the prefix for-. According to him, for- simply indicates movement. As with the other prefixes, its core denotation is a change-of-state meaning.

ge-
The prefix ge- is very common in Old English and has various aspectual effects as the examples in (28) illustrate.

(28)
gefragian ‘to ask by inquiry’, gedician ‘to make a dike or bank’, gebryddan ‘to frighten, terrify’, geliman ‘to cement, join, stick together’

The prefix ge- has a transitivising effect in gedician ‘to make a dike or bank’, a perfective meaning in gefragian ‘to ask by inquiry’, a pejorative meaning in gebryddan ‘to frighten, terrify’ and an intensifying meaning in geliman ‘to cement, join, stick together’. All examples signal that ge- belongs to the group of change-of-state predicates. An example containing the prefix ge- is given in (29).

(29) ne hi cild ne gestrynað.
not they child not beget
‘they didn’t beget a child’
(coaelhom, ÆHom 11:312.1652)

The prefix ge- has a perfective effect in example (29). Like be-, the prefix ge- has a corresponding Modern Dutch and Modern German form. In these sister languages, ge- occurs as a perfective past participle marker.

The prefix ge- weakened to y/i- in Middle English before eventually disappearing from the language altogether. Hiltunen (1983) observes that the prefix ge- had already weakened considerably in Old English. He points out that there is a good deal of variation between verbs prefixed with ge- and simplex verbs (without ge-). An example is given in (30), from Hiltunen (1983: 56).

(30)
a. 7 oft gehergode on Pehtas
and often raided on Picts
‘and often raided on the Pictish land’
(chrE 75.1 (875))

b. 7 oft hergode on Pehtras
and often raided on Picts
‘and often raided on the Pictish land’
(chrA 74.1 (875))
The examples in (30) represent two identical contexts (ignoring text-specific factors, cf. Hiltunen 1983: 65), one with the prefix ge- on the verb, one without. Hiltunen observes a decline in the use of the prefix ge- from early to late Old English and analyses the high frequency of variation between verbs with and without ge- as a sign of "the semantic and functional vagueness of ge- in OE" (Hiltunen 1983: 65).

ge-
Like some of the other prefixes, the prefix ge- occurs as a prefix and as a particle (for the latter, see §4.2.3.2). Some examples of ICVs with the prefix ge- are given in (31).

(31) a. ac þa Iudei of-slogon sume of þam witegum, but the Jews off-slay some of the wise men ‘but the Jews killed some of the wise men’ (coaelhom, ÆHom 3:115.479)

b. Da of-torfodon hi Stephanum mid stanum oð deað, Then off-throw they Stephen with stones to death ‘Then they stoned Stephen to death with stones’ (coaelhom, ÆHom 9:194.1387)

In both examples, the entire prefix-verb combination has moved to the second position in the clause, showing that ge- is a prefix and thus that the combination is an ICV.

Hiltunen (1983: 50), basing himself on Bosworth and Toller (1898), lists the following meanings for the Old English prefix ge-.

(32) a. Intensification (Hiltunen: ‘intensive’) ofræcan 'to reach, obtain', ofsmorian 'to suffocate, strangle'

b. Pejorative (Hiltunen: ‘unfavourable force’) ofðyncan 'to give offense, insult, displease'

c. Perfective (Hiltunen: Attainment of)
 (i) verbs of motion; ofrman 'to overtake'
 (ii) verbs of inquiring; ofacsian 'to find out by asking'

d. Force
 (i) of killing with verbs of striking, throwing, falling etc.; ofsléan 'to strike down, kill'
 (ii) of injury with verbs denoting rest; ofsittan 'to press down, repress, oppress'

e. Transitivity: the verb ofson 'to see, behold'

All these meanings have as a common semantic core the endstate meaning. Of- expresses a goal and encodes the predicate W in the R-LCS.
to-

Like of, to- occurs as a prefix as well as a particle (see §4.2.3.1 for to- as a particle). The prefix to- expresses separation (Hiltunen 1983: 51; Clark Hall 1960), e.g. *tōdræfan* ‘to scatter, disperse, separate’. Some examples of ICVs with the prefix to- are given in (33).

(33) a. & for ðinre bede ic ne to-weorpe ða and because of your command I not in pieces-throw the burg ðe ðu foresricsð.
 town that you mentioned
 ‘and because of your command I will not destroy the town that you mentioned’
 (ocuria, CP:51.399.29.2730)

b. and hi to-bræcon þa burh grundlinga.
 and they asunder-break the town to the ground
 ‘and they destroyed the town completely’
 (ocathom2, ÆCHom II, 4:36.213.826)

In (33a), the ICV status of the prefix-verb combination *toweorpe* ‘destroy’ (lit. ‘throw in pieces’) is signalled by the position of the negative marker ne ‘not’, which precedes the entire combination. Mitchell (1978: 246) notes that there are cases in which ne does not intervene, while the combination is in fact separable, questioning whether this can be seen as evidence for inseparability. The ICV status of the combination *tobræcon* ‘destroy’ (lit. ‘break asunder’) in (33b) is evident from the fact that the entire verb (i.e. including the prefix) has undergone V2 movement. In both examples, the prefix to- contributes the meaning ‘in pieces, asunder’ to the verb. Sometimes, this meaning is already present in the verb and the prefix to- functions as an intensifier. An example is the ICV *totwæman* ‘to separate, divide’.

Mitchell (1978: 246) notes that some prefix-verb combinations with to-, such as *towean* ‘to forbid’ and *tosendan* ‘to disperse’, are loan translations from Latin. Old English *to-* is a translation of Latin *dis-* (cf. OED *to-* Prefix 2 “a particle expressing separation, ‘asunder, apart, in pieces’”).

on-

The element on- is sometimes hard to classify. Hiltunen (1983: 50), citing Nowakowski (1978: 90), points out the various functions of on, which include particle, preposition and adverb. For example, the verb *onfeng* occurs as an ICV ‘to receive’ and as an SCV ‘to begin’, as shown by the examples in (34) (from Los 2005: 20–21).

(34) a. and þu his dohtor ne on-fenge
 and you his daughter not against-take
 ‘and you do not receive his daughter in marriage’
 (ApT 6.15)
b. Helias feng eft on, Ic belaf ana calra Godes witegena …
Helias took again on, I spare one of all God’s prophets
‘Helias began again: I spare one of all God’s prophets’
(ÆLS (Book of Kings) 101)

In (34a), the negative element ne ‘not’ does not separate the prefix on- ‘against’ and the verb fenge ‘take’, indicating that the prefix-verb combination is an ICV here (meaning ‘receive’). The example in (34b) contains the same prefix-verb combination, but here the prefix and the verb are separated after the verb has undergone V2 movement. In this example, then, the verb onfeng is an SCV and its meaning is ‘begin’. Note that the meaning of the prefix on- in the ICV onfeng is more abstract than that of the prefix on- in the SCV onfeng. The prefix on- in (34a) appears to have little meaning, and although the meaning of the particle on- in (34b) is also abstract, it seems to denote initiation. The prefix on- may also denote initiation, (35), but often appears to be meaningless, (36).

(35) onælan ‘to set fire to, ignite, heat, inspire’, onbærnan ‘to kindle, ignite, heat, excite’, onbryrdan ‘to excite, inspire, incite, encourage’, onginnan ‘to begin, attempt, endeavour’

(36) ondrædan ‘to dread, fear’, onsacan ‘to contest, dispute, strive against’, onscunian ‘to shun, avoid, fear, detest’

Like the prefix a-, on- has little semantic content left, (37).

(37) … þæt se hælend wære soð Godes sunu, se þæ þi on rode onhengon.
… that the Saviour was truly God’s son, he who they hung on the cross
‘… that the Saviour was truly God’s son, he who they hung on the cross’
(comart1, Mart 1 [Herzfeld-Kotzor]: De26,A.4.71)

In (37), on- seems to add little meaning of its own to that of the verb, but note that it does abstractly denote a change-of-state and therefore encodes the predicate W in the R-LCS.

þurh-/ðurh-

The prefix þurh- either means through ‘from one end or side to the other’, as in ðurhborian ‘to bore through’ and ðurhlitlan ‘to look through, see’, or it means thoroughly, as in ðurhcleansian ‘to cleanse thoroughly’ and ðurhleornian ‘to learn thoroughly’. It may also express continuation, as in ðurhwunian. An example of þurh- ‘from one end or side to the other’ is given in (38a). The example in (38b) contains an instance of þurh- meaning ‘thoroughly’.
(38) a. ðæt he huru hine selfne ne ðurh-stinge mid ðy
that he certainly himself not through-sting with your
sword adulterous

‘that he certainly doesn’t pierce himself with your adulterous sword’
(cocura, CP.43.313.6.2098)

b. Gif we ðonne ealle ða gerynu Cristes flæsclicynsse
if we then all the mysteries Christ’s incarnation
ðurh-smeagan ne magon.
through-search not may

‘if, then, we may not investigate all the mysteries of Christ’s incarnation’
(cocathom2, ÆCHom II, 15:159.298.3526)

The fact that the negative marker ne ‘not’ in (38a) does not intervene between the prefix ðurh- ‘through’ and the verb stinge ‘pierce’, but rather precedes the entire prefix-verb combination shows that ðurh- ‘through’ is a prefix (cf. also the Dutch ICV door’steken ‘pierce through’; stress on verbal stem as indicated). In (38b), ðurh- ‘through’ has the meaning ‘thoroughly’ and is also a prefix (cf. also the Dutch ICV door’zoeken ‘search through’; stress on verbal stem as indicated). ðurh also occurs separated from the verb, in which case it is either a particle (as in ðurhferan ‘to pass through, traverse’) or a preposition. As a preposition, it is sometimes found in combination with another element such as ut ‘out’, as in (39).

(39) and þæt hors hine bær forð, swa þæt þæt spere him
eode þurh ut, and he feoll cwelende.

‘and the horse carried him along, so that the spear went through him and he fell down dying’
(coaelive, ÆLS[Ash Wed]:50.2731)

In this example, ðurh- ‘through’ is not a particle combining with the verb eode ‘went’, but forms a (complex) preposition with ut ‘out’, meaning ‘throughout’.

Hiltunen (1983: 207) classifies ðurh- as a particle. He notes, quoting Harrison (1892: 43), that the distribution of ðurh- is not as free as that of other particles and that it predominantly occurs in immediately preverbal position, but does not mention that ðurh- occurs as a prefix as well. A diagnostic for prefix status is whether the prefix, in this case ðurh-, can be separated from the verb by the negative marker ne ‘not’ for example. A negative marker that precedes the entire combination is evidence for the ICV status of that combination. Another diagnostic environment is a V2 context, in which the verb moves to the second position in the clause. Prefixes are carried along with the verb, whereas particles are stranded. The stress pattern of the prefix-verb combination in question is also a good indication (prefixes, unlike particles, do not carry primary stress), for which we have evidence from verse.
The prefix ymb- means around, about. The examples in (40) contain prefix-verb combinations with ymb-. The following sentence contains two instances of ymb-, one in a verb and one in a noun.

(40) a. & he hine ne ymb-syrede, sie he feores wyrdhe &
and he him not about-plot, be he life's worth and
folenythre bote, gif he friðstowc gesece.
common law's help, if he refuge seeks
‘and he doesn’t plot against him, he be life’s worth and common law’s help, if he seeks refuge’
(colawafint, LawAfEl:13.36)
b. seo ymb-gæð eall ðæra Silhearwenas land.
she round-goes all the Ethiopian land
‘She surrounds the entire Ethiopian land’
(cooextest, Gen2.13.92)

The meaning of ymb- in the combination ymb-syrede ‘plot against’ in (40a) is fairly abstract in that the meaning ‘about’ is not easily detectable. The meaning of the entire combination appears to be non-compositional, i.e. it cannot be predicted from its constituent parts. In (40b), ymb- clearly adds the meaning ‘around’ to the verb gæð ‘goes’. There is a strong sense of total affectedness of the object in these examples. Ymb- expresses a change-of-state and is clearly resultative.

The examples in (40) provide evidence for the prefix status of ymb-. In (40a), the negative marker ne ‘not’ precedes the entire prefix-verb combination, indicating that the combination is an ICV, consisting of a prefix and a verb. In (40b), the entire prefix-verb combination has undergone V2 movement, indicating that ymb- is a prefix (particles are stranded in V2 contexts).

Although ymb does not occur as a particle, it is attested on its own, but where it does it is either a preposition (cf. Mitchell 1985: 515), as in (41a), or it is more like an adverb, as in (41b). It also frequently appears in the combination ymb utan ‘about, by, around’, (41c).

(41) a. and eft ymbe middæig com ham to hire hlafore mid
and then around noon came home to her husband with
halum eagum bliðe.
healthy eyes cheerful
‘and then, around noon, she came home to her husband cheerfully with
healthy eyes’
(coaelhom, ÆHom 24:24.3769)
b. Is ðæt sægd, ðæt in ða tid swa micel sib ware in Breotone æghwyder ymb, swa Eadwines rice ware Brittany everywhere around, as Edwin rich was

'It is said that there were as many kinsmen around everywhere in Brittany at that time as Edwin were rich'
(cobede, Bede 2:14.144.21.1395)

he ongon mid þæs biscopes lare maran cirican & hyrran he began with the bishop's advice more churches and higher stænenne timbran & wyrcan ymb þa cirican utan stone build and construct around the church outside

'On the bishop's advice, he began to erect greater stone churches around the church'
(cobede, Bede 2:11.138.23.1340)

In treating ymb- as a prefix, I disagree with Dietz (2004), who states that ymb- is a particle (Dietz 2004: 561). The foundations of this statement, made in the introduction to his article, remain unclear. In the conclusion of his article (Chapter XVII), he says "Mit Hilfe dreier von der Anglistik vernachlässigter Kriterien, der abstrakteren Wortbildungsbedeutung, der Fähigkeit zur Reihenbildung und der auch nach Ausweis der Metrik unterschiedlichen Betonung nominaler und fester verbaler Präfigierungen liess sich der umstrittene Präfixstatus von æt-, of-, on-, to-, und 3eond-, ofer-, þurh-, ymb- positiv klären (Kap.XIV)" (Dietz 2004: 608). However, chapter XIV ('Kap.XIV') is mysteriously absent from the article. In his discussion of the three criteria in chapter XIII, Dietz (2004: 599) only briefly mentions ymb- when he discusses the stress placement criterion. He notes that it is the verb that receives stress in a verb like *ymbeode* 'went around'. This seems to me to be evidence for the prefix, rather than particle, status of ymb-, given the fact that prefixes are typically unstressed.

*wiþ-/

The primary meaning of *wiþ-* is 'against', clearly expressing the total affectedness of the object. This meaning is illustrated in the examples in (42).
PARTICLES AND PREFIXES IN LATE OLD ENGLISH

(42) a. ἢc hwæt wilt du þonne cwæðan, gif hwa nanwulta
but what want you then say, if who in no way
nyle wið winman,
not-want against fight
‘but what do you want to say then, if no-one wants to battle in no way’

b. ace se almihtiga sceypend wið-sloh þam unrae.
but the almighty Creator against-strike the mischievous
‘but the almighty Creator opposed the mischievous ones’

(42c) Ac hit is micel ðearf dat mon hire suiðe hraidlice
but it is very necessary that one her very quickly
wið-bregde,
with-hold
‘but it is very necessary that one withhold her very quickly’

In (42a), the ICV wið winnan ‘battle’ (lit. ‘against-fight’) occurs in non-finite form. In (42b), the ICV wið-sloh ‘oppose’ (lit. ‘against-strike’) has undergone V2 movement. In (42c), the primary meaning of wið-, ‘against’, is less obvious but still detectable.

Wið- does not occur as a particle. When wið occurs as an independent syntactic element it functions as a preposition, as in the example in (43).

(43) meng þonne hwæt cwæðun wiþ & hwon butera
mix the chewing gum with and a little butter
‘mix with the chewing gum and a little butter’

In (43), wiþ ‘with’ functions as a preposition and combines with the verb meng ‘mix’ to form a prepositional verb. Its meaning, ‘with’, is clearly distinct from that of the prefix wið-/wiþ- ‘against’.

ut-
Ut predominantly occurs as a particle, but in the verb utlægian ‘to outlaw, banish’ it appears to be a prefix, witness the following example.

(44) Hi geutlagiað eow of heora gesamnungum,
they outlaw you of their congregation
‘They banish you from their congregation’

(42a), (42b), (42c), (43), (44)
In (44), the participle marker *ge-* affixes to the entire prefix-verb combination *utlagian* 'outlaw, banish', which suggests that *ut-* is a prefix.⁴ On the other hand, the fact that *ut* receives primary stress indicates that it is a particle. Moreover, the presence of *ge-* in (44) is unexpected if *ut* is a prefix, because Old English ICVs do not normally allow *ge-* to affix to it.⁴ In the 4 other examples I have found of the verb *utlagian* 'to outlaw, banish' (searching all OE texts in the YCOE corpus), *ut* immediately precedes the verb. All 4 examples are from *The Peterborough Chronicle* and are presented in (45).

(45) a. & æfre ælne Deniscne cyning *utlagede* of Englalande gecwædon. and always each Danish king outlawed of England said

‘and always declared every Danish king outlawed from England’

(cochronE, ChronE [Plummer]:1014.12.1892)

b. & *utlagode* heıro broðer Àgelwine bispoc, and outlawed his brother Àgelwine bishop

‘and outlawed his brother, the bishop Àgelwine’

(cochronE, ChronE [Plummer]:1069.1.2549)

c. & *utlagode* mann Àlfgar eorl. forðon him man wearp on, and outlawed man Elfgar earl because him they charge against

‘and they outlawed earl Aelfgar, because it was charged against him that he

was a betrayer of this king and of all the people of the country’

(cochronE, ChronE [Plummer]:1055.1.2410)

d. & *utlagodon* heora eorl Tostig. and outlawed their earl Tostig

‘and outlawed their earl Tostig’

(cochronE, ChronE [Plummer]:1064.1.2452)

The only example which provides decisive evidence for the prefix status of *ut* is (45c), in which the entire prefix-verb combination *utlagode* 'outlawed' precedes the subject *mann* 'man'. The solution here lies in the etymology of the verb *utlagian* 'to outlaw, banish', which

³ But Mitchell (1978: 246) points out that, while intervention of *ne* and *to* provides evidence for separability, non-intervention of elements such as *ne* and *to* does not provide decisive evidence for inseparability. This could well be the case for *ge-* as well.

⁴ Hiltunen presents some examples which are an exception to this. They are verbs with the prefix *an-*, as in *geanbidode* in (i), from Hiltunen (1983: 89); glosses are mine.

(i) se sylfa godes rices *geanbidode*

who himself god's kingdom awaited

‘who himself awaited god's kingdom’

(Mk 15.43 (CH))

In the example in (i) *ge-* has been attached to the prefixed form *anbidode* (of the stem *ambidian*).
is derived from the prefixed noun *utlaga* 'outlaw', a loan from Old Norse. This also explains why *ut* receives stress, despite its being a prefix. If, as I claim here, *ut* in *utlagian* 'to outlaw, banish' is a prefix, it must be assumed that the verb *utlagian* 'to outlaw, banish' is a lexicalised ICV.

Prefix variation

Hiltunen (1983), in the footsteps of other scholars working on Old English before him, notes that prefixes are interchangeable to a certain extent. In the three Old English texts studied by Hiltunen, he notes a fair amount of variation between the prefix *ge-* and *a-* for example. An example of this is given in (46), from Hiltunen (1983: 76), glosses are mine.

(46) a. non licet tibi habere uxorem fratri tui
 b. ne is *ge*lefed ðæ to habbanne hlaf broðres ðines

not is permitted you to have wife brother yours

'It is not permitted for you to have your brother's wife'

(Mk, (LR) 6.18)

b’. nys þe *a*lyfed to hæbbe unde ðines broðer wif
 not-is you permitted to have your brother's wife

'It is not permitted for you to have your brother's wife'

(Mk, (CH) 6.18)

The example in (46b) is a very literal translation of the Latin original (46a), and even the word order is unaltered. The verb form used here contains the prefix *ge*-. This contrasts with the same sentence from a different manuscript, which is a less slavish translation of the Latin original and has the prefix *a-* (46b'). Hiltunen contributes the relatively free variation between *ge-* and *a-* to the non-contentual semantics of these two prefixes. Variation between the other prefixes (Hiltunen discusses *be-, for-, of-*, *on-* and *to-*) is more restricted and not as frequent as the variation between *ge-* and *a-. Thus, there is also variation between *ge-* and the other prefixes, but this is less frequent than the *ge/-a-* variation. See the discussion of Hiltunen (1983) in §4.2.2.2 for more discussion on this.

4.2.2.3 Old English ICVs in the literature: Hiltunen (1983)

All studies on Old English contain a discussion of the prefix system (e.g. Mitchell 1978, 1985; among others). There has, however, been little systematic investigation into Old English ICVs. The most important work is Hiltunen’s (1983) study, which offers a substantial account of the decline of the prefixes and the rise of the phrasal verb (Hiltunen’s term for VPC). Hiltunen provides a systematic description of the Old English prefixes,

5 Prefix variation of a similar sort is found in the Dutch verb forms *geoorloofd* versus *veroorloofd* 'permitted', where the variation is between the prefix *ge-* and *ver-*.
focusing on their semantics and function, and also provides an account for their eventual
decline in terms of semantic and functional weakening.

Hiltunen’s discussion of the Old English prefixes focuses on the prefix-variation in
three different texts, The Old English translation of Gregory’s Dialogue (GD), The Gospel of St.
Mark (Mk) and the Anglo-Saxon Chronicle (Chr). He shows that, apart from variation between
a verb prefixed with ge- and the simplex verb, there is clear prefix-variation between ge- and
a-, in the sense that the two are often interchangeable, (47), from Hiltunen (1983: 73)
glosses are mine).

(47) a. sed arrepta a diabolo protinus cecidit
b. þa wearð heo sona fram deofle gegripæ 7 niðer on þa
 croudæ gefeoll
 earth fell
‘then she was soon seized from the devil and fell down on the
crotch.

b’. … 7 hrædlice nyðer afeoll
 … and quickly down fell
‘… and fell down quickly’

The example in (47b), translated from the Latin (47a), has ge- (gefeoll ‘fell’) and is found in
two manuscripts (C and O). The same example is found with a- (afeoll ‘fell’) in another
manuscript (H), (47b’). There is no difference in meaning, supporting the view that the
meanings of ge- and a- have become weak. Not mentioned by Hiltunen is the fact that the
weak semantic content of ge- and a- in these examples is also evident from the presence of
the particle niðer/nyðer ‘down’, which acts as a reinforcer of the meaning of the prefixes ge-
and a-.

Prefix-variation with the other prefixes (Hiltunen discusses be-, for-, of-, on- and to) is
more restricted. Hiltunen (1983: 84) assumes that “one prefix can be substituted for another
only if the contents of the two are not contradictory, i.e. there must be at least a partial
overlap between the items”. The ease of interchangeability between ge- and a- is said to follow
from their ‘faded’ meaning, rendering them semantically alike. In GD and Mk, Hiltunen observes a tendency for ge- to be replaced by one of the other prefixes, which he
ascribes to the greater semantic expressiveness of these prefixes (compared to the
semantically weak ge-).

Hiltunen (1983: 85) also speculates on the use of prefixes and the occurrence of prefix-
variation as a stylistic device, but leaves the issue as a topic for further research. He makes
interesting observations on the influence of Latin on whether the Old English verb has a
prefix or not. Thus, in the examples in (48), two Old English translations of the Latin

(48) a. sed arrepta a diabolo protinus cecidit
b. þa wearð heo sona fram deofle gegripæ 7 niðer on þa
 croudæ gefeoll
 earth fell
‘then she was soon seized from the devil and fell down on the
crotch.

b’. … 7 hrædlice nyðer afeoll
 … and quickly down fell
‘… and fell down quickly’

The example in (47b), translated from the Latin (47a), has ge- (gefeoll ‘fell’) and is found in
two manuscripts (C and O).

6 C = MS CCC 322; O = MS British Museum, Cotton Otho C.i. vol.2 (Hiltunen 1983: 32).
7 H = MS Bodleian Hatton 76 (Hiltunen 1983: 32).
original are given, one version with a prefix, the other one without (from Hiltunen (1983: 73); glosses are mine).

(48) a. Et cum trans-fretassent.
 b. 7 mið ðy ofer-foerdon.
 'and sailed across with you'
 (Mk, (L) 6.53)

b'. 7 mið-ðy foerdun.
 'and sailed with you'
 (Mk, (R) 6.53)

c. qui se male habebant circumferre ubi audiebant eum esse

d. ða ðe yfle hæfdon ymb beara ðer geherdon hine
 then the ill got to around carried where heard him
 æd he were
 'then they began to carry about the ill where they heard he was at'
 (Mk, (LR) 6.55)

d'. hi on sæccingum baron þa untruman
 they on sacks carried the sickly
 'they carried the sickly in sack beds'
 (Mk (CH) 6.55)

As Hiltunen (1983: 73) notes, the presence of the prefix in (48b) and (48d) is evidently influenced by the Latin original, (48a) and (48c) respectively. According to Hiltunen, “there is hardly any difference in meaning between the prefixed verbs and the simplexes. The prefix is almost redundant” (Hiltunen 1983: 73). Here I disagree with Hiltunen, because in my opinion the prefix ofer- ‘over’ in (48b) and the prefix ymb- ‘around, about’ in (48d) clearly contribute a spatial meaning to the meaning of the verb. The meaning of the verb feran ‘go, proceed’ does not necessarily imply a crossing, a meaning that is added by the prefix ofer- ‘over’. Likewise, the meaning of the verb beran ‘carry’ does not signify the meaning ‘around, about’.

Hiltunen also comments on the distribution of prefixes across different verbs in the three texts mentioned above. Acknowledging that the set of data is small and based on texts from different genres, Hiltunen (1983: 87) observes a slight decrease in the number of prefixed verbs in late Old English.

For his study of the decline of the prefixes, Hiltunen investigates the occurrence of prefixes in the first and the second continuation of the Peterborough Chronicle, a twelfth century transitional text. The results for the individual prefixes are summed up in Table 1 (from Hiltunen 1983: 93, his Table 13).
The figures in Table 1 illustrate an overall decrease in prefixes compared to Old English. Moreover, the prefixes of- and to- are very infrequent and there are no attestations of the prefix on- in both the first and the second continuation of the Peterborough Chronicle. In the Ancrene Riwle, another early Middle English text, Hiltunen finds that “all the OE prefixes may still be found, but much less frequently than in OE” (Hiltunen 1983: 93).

Hiltunen adduces several reasons for the breakdown of the prefixes. The first is the semantic and functional weakening that the prefixes underwent from earliest Old English (Hiltunen 1983: 94–97). As the literal (Hiltunen uses the term ‘concrete’) meanings of the prefixes faded, new, abstract meanings started to develop. The most important abstract meanings are the perfectivising and the intensifying ones (Hiltunen 1983: 95). In the course of the Old English period, the abstract intensifying meaning began to fade as well. Hiltunen provides an example in which the prefix is replaced by a degree adverb supplying the intensifying meaning, (49) (from Hiltunen 1983: 97; glosses are mine).

\[
\begin{align*}
\text{(49)} \quad \text{a.} & \quad \text{ita ut in eum manibus excederit} \\
\text{b.} & \quad \text{þæt hine mid his handum } \text{for-} \text{beah} \\
& \quad \text{that he him with his hands } \text{down-holds} \\
& \quad \text{‘that he holds him down with his hands’} \\
\text{GD, (CO) 20.25} \\
\text{b’.} & \quad \text{þæt hine mid his handum } \text{betelice} \text{ beot} \\
& \quad \text{that he him with his hands } \text{violently} \text{beats} \\
& \quad \text{‘that he beats him violently with his hands’} \\
\text{GD, (H) 20.24}
\end{align*}
\]

The prefix for- in (49b), which his found in the C and O manuscripts, is absent in the example in (49b’) from the H manuscript. Instead of the prefix, the H manuscript uses the degree adverb betelice ‘violently’, intensifying the meaning of the verb beot ‘beats’. I am not convinced that these examples provide evidence for the semantic weakening of the prefix for-, as suggested by Hiltunen (1983: 97). They merely show that the function of prefixes such as for- can be fulfilled by other, analytic, elements, but do not necessarily imply that the meaning of for- has been weakened and that therefore a different construction is chosen in a
different manuscript. The fact that the two examples involve a different verb (beah, of bugan ‘bend’ in (49b) and bent, of betan ‘beat’ in (49b)) seems to point to variation between constructions rather than avoidance of the prefix for- because it lacks the required intensifying meaning. All this of course does not call into doubt the observation that the prefixes lost the semantic power to intensify the meaning of the verb.

Hiltunen argues that the variety of prefix meanings led to a functional load that was too heavy for the system to cope with, which caused them to be replaced by the VPC (‘phrasal verb’) system in Middle English.

A second reason for the decline of the prefixes discussed by Hiltunen is the presence of the particle system, which co-exists with the ICV system in Old English. The general trend towards the use of more analytic constructions also extended to the prefix system and eventually resulted in the disappearance of the prefixes in favour of particles.

A third reason for the decay of the ICV system is related to the existence of contexts in which the status of the preverbal element may have been difficult to determine. Although Hiltunen admits that we cannot be certain that such ambiguity existed in Old English, he suggests that it may have led to “an avoidance of prefixed verbs in general” (Hiltunen 1983: 101). He also suggests that the assumed ambiguity could have contributed to the change in the position of the particles, to disambiguate between prefixes and other elements that can occur in preverbal position (like particles). I am not convinced by this suggested scenario, however, because such structural ambiguity could only have arisen in situations in which the particle occurs in immediate preverbal position. It is unlikely that the change to postverbal position of the particles was influenced by confusion between particles and prefixes, simply because the two were very different syntactically (separable vs. inseparable), and prosodically (stressed vs. unstressed).

Hiltunen concludes the discussion by saying that “the important thing to note is that the decay of the prefixes ties in with the overall development of English at the time […] in particular the establishment of the S.V.O. syntax …” (Hiltunen 1983: 101).

4.2.3 Separable Complex Verbs (SCVs) in Old English

The Old English separable complex verbs (SCVs) are the precursors of the Present-Day English verb-particle combination (VPC). As already pointed out in the previous section, particles and prefixes have a common origin (their ancestors are preverbs) and share a common semantic core (they are change-of-state predicates). Despite their shared background and their shared semantics, SCVs and ICVs are very different structurally. In this section, I provide a detailed description of the Old English SCVs. In §4.2.3.1, I discuss the properties of particles and propose a structural and semantic analysis for SCVs. §4.2.3.2 focuses on the individual Old English particles. In §4.2.3.3 I review some of the literature on the syntax of Old English SCVs.
4.2.3.1 Analysing the properties of Old English SCVs

In this section I will discuss the syntactic, semantic and stress properties of Old English SCVs.

Syntax

There have been few attempts to define the exact structural status of Old English particles. Fischer et al. (2000) were the first to argue for an analysis in which Old English particles are secondary predicates in a small clause configuration (see Chapter 5). Similarly, van Kemenade and Los (2003) show that the syntax and transparent semantics of Old English particles are open to an analysis in which they are secondary predicates. They in fact argue that ICVs and SCVs share a common origin as predicates and that they still share a change-of-state semantics nowadays, despite having undergone a different morphosyntactic development. Van Kemenade and Los propose that Old English particles encode a primary predicate semantically (they express an endstate) and represent secondary predicates in a syntactic (resultative) small clause configuration. I follow van Kemenade and Los (2003) in analysing Old English particles as secondary predicates and will discuss the syntactic evidence for their phrasal status and for analysing them as secondary predicates.

The syntactically independent (and therefore phrasal) status of particles is apparent from the fact that they can occur separated from the verb, as exemplified in (50).

(50)

a. forðæm hio nanne swetne wæsðm forð ne bringð
because she no sweet fruit forth not brings

"because it does not produce any sweet fruit"

(cocura,CP:45.341.22.2297)

b. & deofolseocnesa ut to adrifanne.
and demoniacal possession out to drive

‘and to drive out demoniacal possession’

(cowsgosp,Mk [WSCp]:3.15.2351)

c. þæt hi hine ut sceoldon wurpan.
that they him out should throw

‘that they should throw him out’

(coeust,LS 8 [Eust]:168.173)

d. … ealand … þæt we ær ut of gongende wær
… island … that we before out from going were

‘… island … from which we had previously put out’

(cobede,Bede 5:1.384.23.3834)

e. þa sticode him mon þa eagan ut
then stuck him someone the eyes out

‘then his eyes were gouged out’

(coorosiu,Or 4:5.90.13.1822)
As these examples show, Old English particles may be separated from the verb by a negative marker (50a), an infinitive marker (50b), a modal verb (50c), a stranded preposition (50d), or they may be stranded by V2-movement (50e) (these contexts are also discussed in Fischer et al. (2000)). These examples also show the secondary predicate status of Old English particles. To test this, we can paraphrase the particle and the object with the copula be, e.g. ‘he is out’ (50c), ‘the eyes are out’ (50e). Particles function as secondary predicates, predicating over the object and can be compared to what in traditional grammar terms are known as object complements (e.g. on the jar in *She placed the lid on the jar*).

Old English particles can also be separated from the verb by a direct object, as in (51).

(51) & fylian urum haligdomum ut & in
and follow our relics out and in
‘and follow our relics out and in’
(ÆCHom I, 18:318.40.3426)

The example in (51) contains two coordinated particles, *ut* ‘out’ and *in* ‘in’, which occur separated from the verb *fylian* ‘follow’. Its word order resembles that of Present-Day English VPCs.

Another criterion for phrasal status is the presence of a modifier. Like Present-Day English particles, Old English particles can be modified, as the example in (52) shows.

(52) & ærn swa feor up swa næfre ær ne dyde.
and run as far up as never before not did
‘and (he) ran up as far as (he) never did before’
(ChronE [Plummer]:1014.28.1906)

In this example, the particle *up* ‘up’ is modified by the adverb *feor* ‘far’. I take this as evidence for the phrasal status of Old English particles and assume that the modifier is generated in the specifier of the particle phrase.

A third criterion for phrasal status is the possibility of topicalisation (cf. van Kemenade and Los 2003). Topicalised particles are indeed attested in texts from the O3 period, though not very frequently. Examples are given in (53).

(53) a. & nyder ne astigad þa őc on hyre middele synt,
and down not go those who in their midst are
‘and those who are in their midst do not descend’
(cowsgosp, Lk [WSCp]:21.21.5380)

b. Nôder he ahearas
down he fell
‘he fell down’
(cocathom1, ÆCHom I, 11:270.111.2078)
In (53a), the particle *nyðer* ‘down’ precedes the negative marker *me* ‘not’, indicating that the particle has been topicalised. In (53b), the particle *niðer* ‘down’ precedes the subject, which is evidence for topicalisation.

The data presented here favour an analysis in which Old English particles are treated as phrases. Thus, while SCVs and ICVs share a common change-of-state semantics, they appear to be different structurally.

Semantics

The meaning of Old English particles is predominantly transparent (cf. Hiltunen 1983), which contrasts with the abstract meaning of the prefixes. I use the term ‘transparent meaning’ to mean the meaning they have in isolation, which for the particles is a direction in space. The transparent meaning of particles is illustrated by the examples in (54).

\[(54)\]
\[
\begin{align*}
\text{a. } & \text{ and the flood in flowed} \\
& \text{‘and the flood flowed in’} \\
& \text{(Lk [WSCp]:6.49.4085)}
\end{align*}
\[
\begin{align*}
\text{b. } & \text{ and him there out spit} \\
& \text{‘and vomited it up there’} \\
& \text{(ÆCHom I, 18:318.28.3413)}
\end{align*}
\]

The particles *in* ‘in’ and *ut* ‘out’ in (54) both have a transparent meaning, indicating a direction. This transparent meaning correlates with predicative function, as signalled by the paraphrases ‘the flood is in’, ‘it is out’, and therefore provides further evidence for the phrasal status of particles. The meaning of the SCVs in (54) is compositional in the sense that it can be predicted from the meaning of its constituent parts.

Despite the structural difference between Old English particles and prefixes, both denote an endstate. This is illustrated for SCVs in (55).

\[(55)\]
\[
\begin{align*}
& \text{When Moses raised his hands, …} \\
& \text{‘When Moses raised his hands, …’} \\
& \text{(cootenst, Exod:17.11.3063)}
\end{align*}
\]

The particle *up* conveys a change-of-state. Beside describing the path of the activity, it signals the endpoint (goal) of the activity. Van Kemenade and Los (2003) observe a clear mismatch between semantics and syntax, because particles are primary predicates semantically, but secondary predicates syntactically.\(^8\) The particle *up* in (55) doubles the

\(^8\) There are instances in which the particle is a primary predicate syntactically. These are cases in which a particle has been converted to a verb. Thus, Old English has the verbs *atian* ‘to put out, expel’,
prefix -a- which indicates that the predicative function is taken over by the particle. The phonologically weak and semantically abstract prefix is reinforced by the phonologically strong (primary stress) and semantically transparent particle (see also Chapter 6 on the decline of the ICVs).

According to Hiltunen (1983: 147), particles do not convey a resultative meaning until the late Old English period and continue to do so into the Middle English period. He notes “in the present OE material I found no examples where this meaning would have been unambiguously achieved through a phrasal adv.” However, I found some clear resultative examples in texts which Hiltunen includes in his early Old English corpus, (56).

(56) a. & hu Eþna fyr upp afeow
 and how Etna’s fire up flew
 ‘and how Etna’s fire flew up’
 (coorosiu, OrHead:5.4.51)

b. Ðæt is ðonne ðæt mon his wætru ut-læte
 that is when that man his water out-let
 ‘That is, when that man let his water out’
 (cocura, CP:48.373.15.2525)

c. & his heafod of asloh
 and his head off smote
 ‘and cleaved his head off’
 (cobeđe, Bede 1:7.40.7.331)

d. & Ceawlin wast ut adrifên
 and Ceawlin was out driven
 ‘and Ceawlin was expelled’
 (cochronA-1, ChronA [Plummer]:592.1.243)

In each of the examples in (56), the particle conveys the result of the action denoted by the verb. As I have pointed out above, Old English particles invariably express a change-of-state, resultative or not.

Although the meaning of Old English particles is predominantly transparent, there is evidence that it has undergone some shift towards more abstract meanings. Van Kemenade and Los (2003: 86) show that there is a historical connection between PP predicates and particles. The particle adun ‘down’, for example, is derived from Old English of dune ‘off the hill or height’, a full prepositional phrase. This PP was weakened to adun and eventually reduced to a form without a.- The Old English particle aweg underwent a similar grammaticalisation process. It derives from the full prepositional phrase on weg ‘on one’s way’. This form occurred as a single word onweg in Old English, but was reduced to aweg. Interestingly, the a- prefix has not disappeared, cf. PDE away. Thus, the meaning of particles, the precursors of the particles in Present-Day English, was underspecified to begin

meanian ‘to depress, abase, bring low’, uppian ‘to rise up, swell’ (cf. Present-Day English to up, to off, to down; see Chapter 1).
with (hence van Kemenade and Los’ 2003: 86) term ‘grammaticalised predicates’ for particles.

The transparent (i.e. directional) meaning of the particles contrasts with the abstract meaning of Old English prefixes. Mitchell (1985: 445) notes that the existence of different meanings for a combination often signals a difference in separability. He mentions the verb *ofslean*, which means ‘to smite off’ (SCV) or ‘to kill’ (ICV). The examples in (57) illustrate this difference in semantics.

(57) a. and þæra cadigra femme þæt heafod of asloh.
 and their blessed women’s the head off smote
 ‘and (he) cut off the blessed women’s heads’
 (comargaC, 22.11.351)

b. and his bróðor Horsan man þær ofsloh,
 and his brother Horsa people there killed
 ‘and there people killed his brother Horsa’
 (cochronC, ChronC [Rostitzke]: 455.1.59)

The combinations in (57) consist of the same prefix (*of*) and verb (*sloh*). A first indication of the particle status of the prefix *of* in (57a) is the presence of the prefix *a-* on the verb *sloh* ‘smote’. The (separable) prefix *of* doubles the (inseparable) prefix *a-* (for a discussion of prefix doubling in Old English, see §4.2.32). The combination in (57b) has a non-compositional meaning (‘to kill’) and is not found separated, whereas the combination in (57a), which has a compositional meaning (‘to smite/cut off’), is attested with the prefix detached from the verb, (58).

(58) and gesloh heora anum þæt swiðre ear off.
 and smote their ones that right ear off
 ‘and cut off their right ear’
 (cocathom2, ÆCHom II, 14.1:140.92.3108)

The combination in (58) has the same (compositional) meaning as that in (57a). The meaning is derivable from the transparent meaning of the particle and the meaning of the verb. The fact that the particle is separable from the verb indicates that it is an SCV. Thus, the semantics of a combination is another criterion for distinguishing between particles and prefixes.

Stress

Unlike prefixes, particles have primary stress, which is apparent from their appearance in stressed positions in verse. Consider the examples from the Old English epic poem *Beowulf*, written in alliterative verse. The example in (59a) is taken from van Kemenade and Los (2003: 106), their example (57). The onset of the alliterating syllables that receive primary stress are underlined.
In alliterative verse, alliteration is the main organising device of the verse line. Each line consists of two half-lines, which each have two strong stresses (indicated by means of underlining in (59)). The half-lines are divided by a pause, the caesura (indicated by the forward slash in (59)). One, or both, of the two stressed syllables in the first half-line alliterates with the first stressed syllable of the second half-line. In the examples in (59), the particles *ut* ‘out’, *up* and *forð* ‘forth’ respectively, occur in an alliterating position and therefore carry primary stress.

4.2.3.2 The Old English particles

The group of Old English particles includes *(a)don* ‘down’, *onweg*/*aweg* ‘away’, *forð* ‘forth’, *niðer* ‘down’, *up(p)* ‘up’, *ut* ‘out’, *of* ‘off’, *fram* ‘from, forth, out, away’, to ‘towards, in the direction of’, *ofer* ‘across’. Table 2 lists the Old English particles with examples of SCVs they occur in.
Table 2: The Old English particles

<table>
<thead>
<tr>
<th>Particle</th>
<th>Meaning</th>
<th>Examples of SCVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>up(p)</td>
<td>up, upwards</td>
<td>up aspringan 'to spring up, arise'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>up (e)stigan 'to go, rise up, ascend'</td>
</tr>
<tr>
<td>ut</td>
<td>out</td>
<td>ut adřejan 'to drive out, expel'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>utscufan 'to push out, exclude'</td>
</tr>
<tr>
<td>(a)dun</td>
<td>down, downward</td>
<td>adunfeallian 'to fall down'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adunstigan 'to go down, descend'</td>
</tr>
<tr>
<td>nider</td>
<td>down, downward</td>
<td>niðer astigan 'to descend'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>niðertiřifan 'to throw down'</td>
</tr>
<tr>
<td>in(n)</td>
<td>in, into</td>
<td>in sendan 'to send in'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instigan 'to climb in'</td>
</tr>
<tr>
<td>on</td>
<td>on(wards); up; against</td>
<td>on abeberian 'to lift up'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>onfon 'to begin'</td>
</tr>
<tr>
<td>of</td>
<td>off, away, from, out of</td>
<td>of animen 'to take away'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of aceorfan 'to cut off'</td>
</tr>
<tr>
<td>onweg/aweg</td>
<td>away, forth, out</td>
<td>onweg adřejan 'to drive away'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>awegfleon 'to fly or flee away'</td>
</tr>
<tr>
<td>ford</td>
<td>forth, away; on</td>
<td>fordberan 'to bring forth, produce'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>forðrasan 'to rush forth, rise up'</td>
</tr>
<tr>
<td>fram</td>
<td>from, forth, out, away</td>
<td>fram adřejan 'to drive away, expel'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>framswengan 'to swing away, shake off'</td>
</tr>
<tr>
<td>to</td>
<td>towards, in the direction of</td>
<td>tocweðan 'to forbid, interdict'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tocuman 'to come, arrive'</td>
</tr>
<tr>
<td>offer</td>
<td>across</td>
<td>offerclimban 'to climb over'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>offerfan 'to pass, cross over'</td>
</tr>
</tbody>
</table>

The particles *up(p)* ‘up’ and *ut* ‘out’ are among the most frequent of the Old English particles, and both denote a direction. Their frequency is partly due to the fact that they combine with a large number of different verbs to form SCVs. Examples are given in (60).

(60) a. & big *drifon* hine *ut.*
and they drove him out
‘and they expelled him’
(cowsgosp, Jn_[WSCp]:9.34.6580)
In (60a), the particle *ut* 'out' is stranded after verb movement to the second position in the clause. In (60b), the imperative verb *hefe* 'lift' has moved to a clause-initial position, leaving behind the particle *up*, which surfaces postverbally as a result. In the examples in (60), *up* and *ut* 'out' combine with a simplex verb, but they often combine with a prefixed verb (an ICV). Examples are given in (61).

(61) a. & Aaron *hefde* *up* hys hand, and Aaron lifted up his hand (cootest, Exod:8.17.2642)

b. Da *beseah* se munuc *up*. then looked the monk up (cocathom1, ÆCHom I, 23:369.144.4644)

c. Hel oncneow Crist. þa ða heo *forhet* hyre haftlingas *ut* Hell knows Christ when she casts her prisoners out through the Saviour's invasion (cocathom1, ÆCHom I, 15:306.178.2903)

In all three examples in (61), the prefix (*a-, be- and for- respectively) has a very abstract meaning and does not seem to add any meaning to that of the verb. The particle not only expresses a direction, but takes over from the prefixes and denotes the result of the event expressed by the verb.

There are two Old English particles that express a downward motion, *(a)dun* and *niðer/niþer*. Examples are given in (62).

(62) a. & þa he *nyðer abeah* he geseah þa linwæda liegan and when he down bent he saw the linnen cloth lie ‘and when he bent down, he saw the linnen cloth lying there’ (cowsosp, In [WSCp]:20.5.7384)

b. Da he þas word gehyrde. þa *feol* he *adune* when he those words heard then fell he down ‘When he heard those words, he fell down’ (cocathom1, ÆCHom I, 22:357.94.4398)
Nyðer ‘down’ in (62a) immediately precedes the verb abeah ‘bent’. The verb consists of a prefix a-, signalling that nyðer is a particle. In (62b), the verb feol ‘fell’ has undergone V2 movement, inverting with the subject he. The particle adune ‘down’ is stranded. The particle niðer/niþer has disappeared from the English language. It has survived only as the word nether ‘in a lower position’ (e.g. the nether regions), which has a restricted use in Present-Day English. It has cognates in Modern Dutch (neder, neer ‘down, downwards’) and Modern German (nieder ‘down, downwards’).

The number of SCVs with the particle in(n) ‘in’ is considerably lower than SCVs with up, ut ‘out’ and adun ‘down’. Some examples are given in (63)

(63) a. and ge sylfe in ne farað, and you self in not go
 'and you yourself don’t enter'
 (coaelhom, ÆHom 3:96.466)

 b. and het up ateon ardlice Danihel, and þa in awurpan
 and ordered up lift quickly Daniel and then in throw
 þe hine wregdon ær.
 who him accused before
 'and ordered to lift up Daniel quickly and then to throw in they who had accused him earlier’
 (coaelhom, ÆHom 22:333.3473)

In (63a), the negative marker ne ‘not’ intervenes between the particle in and the verb farað ‘go’. In (63b), the particle in combines with a prefixed verb (ICV), awurpan ‘throw’. In the example in (64), inn ‘in’ has a clear adverbial use.

(64) & be-dicodon syðdon þa burh uton þet nan
 and be-dyked then the town on the outside so that no
 mann ne mihte ne inn ne ut.
 man not can not in not out
 'and then fortified the town on the outside so that no man could go in or out’
 (coehom, ChronE [Plummer]:1016.42.1970)

In this example, inn ‘in’ occurs on its own (i.e. does not combine with a verb). It is coordinated with ut ‘out’ and follows the verb mihte ‘can’. It functions as an adverb rather than a particle.

There are numerous examples in which in(n) is followed by a prepositional phrase headed by the preposition to. Examples are given in (65).
(65) a. and se cyning eode eft in to ðam seocan.
 ‘and then the king visited the sick people’
 (coaelhom, ÆHom 20:159.3020)

b. Ða ongunnon þa Franca steppan in to þære cyricean
 then began the Franks step in to their churches
 (cogregdH, GD 1 [H]:2.16.13.123)

Examples like these are difficult to analyse. It is not clear whether in
these examples is a particle that combines with the verb (eode ‘went’ in (65a)
and steppan ‘step’ in (65b)) or whether it should be analysed as the
preposition into. The following examples further illustrate the problem.

(66) a. Ða he hi geseah & Beniamin mid him, ða cwæþ
 when he them saw and Benjamin with him then said
 he to hys geferan: Læde in þas men
 he to his servants lead in those men
 ‘When he, and Benjamin with him, saw them, then he said to his servants:
 “Lead those men in”’
 (cootest, Gen:43.16.1830)

b. & lædde hine in to his huse.
 and led him in to his house
 ‘and led him into his house’
 (cootest, Gen:29.13.1192)

Both examples contain the same ‘combination’, namely a form of the
verb lædan ‘to lead’ and in. In (66a), in clearly combines with
the verb læde ‘lead’ to form an SCV. In (66b), however, the presence
of the prepositional phrase to his huse ‘to his house’ obscures the
status of in.

By contrast, there are examples in which in is ‘doubled’ by the
preposition into, as in (67).

(67) ne ic nelle inngan into Godes huse;
 not I not-want in go into God’s house
 ‘I don’t want to enter into God’s house’
 (coaelhom, ÆHom 27:111.3992)

In examples like (67), in is clearly a particle and is part of the SCV
inngan ‘to go in, enter’, which is modified by a prepositional phrase
headed by the preposition into. Since no such evidence is available in
(65–66), we cannot be certain about the status of in in these
examples. Some other evidence is available, however. Consider the example in (68).
(68)
com Swegn eorl in mid vii scipon to Bosenham. and came Swegn eorl in with seven ships to Bosham
‘and earl Swegn came in to Bosham with seven ships’
(coehronE, ChronE [Plummer]:1046.21.2188)

In (68), the prepositional phrase headed by to is separated from in by other material. This indicates that in should really be seen as an element separate from to. In any case, the analysis in which in to is considered a preposition is excluded for this example.

Because of the apparent ambiguity, I have excluded from my database examples in which in is immediately followed by a prepositional phrase headed by to.

The particle on has several meanings. To give a few examples, it can denote the start of an action, as in (69a), or it can telicise the event, as in (69b).

(69) a. and Helias feng eft on, Ic helaf ana ealra Godes witegena, and Helias took again on I spare one of-all God’s prophets
‘and Helias began again: I spare one of all God’s prophets’
(coaelive, ÆLS [Book of Kings]:101.3723)

b. Ðæt mela bið god on to sceadenne. the flour is God up to divide
‘The flour is for God to divide up’
(colacee, Lch II [1]:38.5.6.1199)

In (69a), the separable prefix are is stranded as a result of finite verb movement to the second position in the clause. In (69b), the infinitival marker to intervenes between the particle on and the verb sceadenne ‘divide’.

As Table 2 shows, the primary meaning of the particle of ‘off, away, from, out of’ is removal, movement away from something. Examples are given in (70).

(70) a. Her Offa Myrcna cing het Æþelbrihte þæt heafod now Offa Mercian king ordered Athelbright that head
of-aslean. off-smite
‘At this point in time Offa, King of Mercia, ordered Athelbright to cut off the head’
(coehronC, ChronC [Rositzke]:792.1.427)

b. & cearf of heora handa & heora nosa. and cut off their hands and their noses
‘and cut off their hands and noses’
(coehronE, ChronE [Plummer]:1014.24.1903)

In (70a), of occurs in preverbal position, prefixed to the verb, so that we cannot tell whether it is a particle or a prefix. The clue to its status lies in the presence of the prefix a-, which
indicates that \textit{of} ‘off’ is a particle. In (70b), the verb \textit{cearf} ‘cut’ precedes the particle \textit{of} ‘off’, resembling the Present-Day English V–Prt–Obj order.

Another Old English particle denoting ‘movement away from’ is \textit{aweg}. Some examples of SCVs with \textit{aweg} ‘away’ are given in (71).

(71) a. & \textit{alædde} hine \textit{aweg} wepende to circean, and led him away weeping to church
 ‘and led him away to the church weeping’
 (colsigewZ, ÆLet 4 [SigewardZ]:1137.556)

 b. Ða \textit{gewende} his here \textit{aweg} swyðe hraðe
 then went his army away very quickly
 ‘Then his army went away very quickly’
 (coaelive, ÆLS [Book of Kings]:223.3830)

In (71a), \textit{aweg} ‘away’ combines with the verb \textit{alædde} ‘led’, which contains the prefix \textit{a-}. The verb (ICV) \textit{alædde} ‘led’ has undergone V2 movement, stranding the particle \textit{aweg} ‘away’. The prefix \textit{a-} hardly adds any meaning to the verb and is doubled by the particle \textit{aweg} ‘away’ to reinforce the intended meaning. The context of the example in (71b) is similar to the one in (71a). The verb has moved to the second position in the clause, stranding the particle \textit{aweg} ‘away’. As in (71a), the verb contains an prefix, \textit{ge-} in this case, which has so little semantic content left that a particle, \textit{aweg} ‘away’, is doubled onto it as a semantic reinforcement.

The particle \textit{forð} ‘forth, away; on’ combines with several verbs to form an SCV in Old English. Examples are given in (72).

(72) a. & \textit{tima is forð} \textit{agán}. and time is forth went
 ‘and time has passed by’
 (cowsgosp, Mk [WSCp]:6.35.2626)

 b. & \textit{we beoð fram} him \textit{forð gecigede} to þam heofonlican
 and we are by him forth called to the heavenly
 gebeorscipe mid þam márum heah-fæderum Abrahame & feast with the great high-fathers Abraham and Isaac & Jacob & allum haligum werude.
 Isaac and Jacob and all holy company
 ‘and we are called forth by him to the heavenly feast with the great fathers Abraham, Isaac and Jacob and all the holy company’
 (coverhom, HomM 13 [ScraggVerse 21]:117.2723)

 c. Ða \textit{foron forð} of hi comon to Lundenbyrig then went on until they came to London
 ‘Then they went on until they came to London’
 (cochronC, ChronC [Rositzke]:894.33.899)
In (72a,b), *forð* ‘away, forth’ immediately precedes the verb (*agan* ‘went’ in (72a) and *gecgædde* ‘called’ in (72b)). In (72c), the particle *forð* follows the verb *foron* ‘went’ and expresses continuation. The particle *forð*/*forþ* developed a continuative meaning, much like the meaning of *on* (e.g. *move on*) in Present-Day English. *Forð*/*forþ* did not survive as a productive particle into Present-Day English. It retains some of its old uses in a few, mostly formal, Present-Day English VPCs (e.g. *call forth*, *set forth*, and the archaic *sally forth*) and in the fixed expression *back and forth*.

The particle *fram* ‘from, forth, out, away’ denotes removal (cf. *forð*/*forþ* ‘forth’, *onweg*/*aweg* ‘away’). Examples are given in (73).

(73)

a. & þa dioflu fram adrifð,
and the devil away drives
‘and drives away the devil’
(coverhorn, 146.518)

b. he him fram-gewat,
he himself away-goes
‘he apostatises himself’
(cowsgosp, Lk [WSCp]:4.35.3868)

c. Hyt þæs magan sar fram adeð.
it that stomach pain away did
‘It cured that stomach pain’
(coherbar, 46.2.940)

Fram ‘away’ is in immediately preverbal position in all three examples, so it is impossible to tell from its position whether it is a particle or a prefix. Their particle status is signalled by the fact that they combine with a prefixed verb. There are not very many combinations with *fram* and it is not found following the verb very often. An example is given in (74).

(74)

& forlet se here þa burg & for fram;
and abandoned the army the town and set forth
‘and the army abandoned the town and set forth’
(cochronA-2c, ChronA [Plummer]:921.43.1307)

In (74), *fram* immediately follows the verb *for* ‘set, went’. The status of *fram* is ambiguous between particle and preposition (with ellipted object). *Fram* did not survive as a particle, and is only attested as a preposition in Present-Day English.

The primary meaning of the particle *to* is ‘towards, in the direction of’ (cf. the prefix *to-*) has the meaning ‘separation (by force), apart’) (cf. Clark Hall 1960). *To* most commonly occurs as a prefix, but some examples of the particle *to* are attested as well. An example is given in (75).
(75) a. & swa hwæt swa þu mare to-gedest, þonne ic cume ic hit repay you
and whatsoever you more to-did, when I come I it forgylde þe.

'th and whatsoever you add more, when I come I will repay it to you'
(cowsgosp, Lk [WSCp]:10.34.4524)
b. and ascende his heretogan to, ðe huxlice spræc be
and sent his commanders out, who shamefully spoke by
God and by Ezechian with much boasting
(Gode and be Ezechian mid mycclum gehcote.
(coaelive, ÆLS [Book of Kings]:393.3944)

c. To-becume þin rice,
to-come your kingdom

'th your kingdom come'
(cowsgosp, Mt [WSCp]:6.10.305)

The meaning of the particle to in (75a) is roughly 'in addition to'. It is separated from the verb it combines with by the prefix ge-. In (75b), to is stranded as a result of V2 movement. The meaning of to in this example is 'out, away' (cf. 'in the direction of'). In examples like (75b), it can be difficult to determine whether to is a particle or a preposition (with ellipted object) or postposition (cf. Hiltunen 1983: 168ff.). I found many examples of the combination togan 'to go to', in which to often occurs separated from the verb. Such examples can either be analysed as containing an SCV, in which case to is a particle that has been stranded by verb movement. Alternatively, such examples may be analysed as containing a verb followed by a prepositional phrase headed by to. In this analysis, the preposition to is stranded as a result of verb movement and has an implicit object. In (75c), to reinforces the semantically weak prefix be-. To has not survived into Present-Day English as a particle, but has cognates in Modern Dutch toe 'in the direction of, towards, against' and Modern German zu 'towards'.

Like to, ofer 'over, across' occurs as a particle and as a prefix, though in most cases it is a prefix. An example of ofer as a particle is given in (76).

(76) Wið monoðseocynsse gyf man þas wyrte peoniam þam
against lunacy if man the herb peony the
monoðseocan ligcgendon ofer alegð, sona he hyne sylfne halne
lunatic lying over place, soon he him self healthy
up ahefð,
up lifts

'If man against lunacy apply the herb peony to the lunatic ones lying down, he soon lifts himself up healthy.'
(coherbar, 66.1.1156)
The status of *ofer* as a particle is equivocal, because it could also be analysed as a preposition. The meaning of the prefix *ofer-* derives from the prepositional use of *ofer*, denoting ‘beyond, above, more than’ as in the ICV *oferþeon* ‘to excel, surpass’. This meaning has survived in various Present-Day English verbs, e.g. *overdo*, and nouns, such as *overmerit* and adjectives, e.g. *overenthusiastic, overripe*. The adverbial meaning is still found in prefixed verbs such as *overlook, overshadow, overhang*. As a particle, *ofer* means ‘across’.

Abstracting away from the differences in meaning between the individual Old English particle (although some particle share some meanings), we notice that they all have a transparent meaning and that they all denote a result (see subsection on semantics for more discussion of their resultative semantics).

Prefix doubling

An important indication that the ICV system was in decline in Old English is the fact that prefixes are often doubled by a particle. As van Kemnade and Los (2003: 104) put it, “there is clear evidence that prefixes in Old English […] are in an advanced state of grammaticalization”. Examples are given in (77).

(77) a. & þæt geswell of amind
 and the swelling away takes
 ‘and removes the swelling’
 (coherbar, 5.6.360)

b. & þone cyng Dufenal ut adraðfde.
 and the king Dufenal out drove
 ‘and expelled king Dufenal’
 (cochronE, 1097.40.3296)

c. & Aaron ahefde up hys hand,
 and Aaron raised up his hand
 ‘and Aaron raised up his hand’
 (cootest, Exod:8.17.2642)

In each of these examples, the prefix *a-* has been doubled by a particle. This is reminiscent of the preverb doubling in Gothic discussed in §4.1.2 above (see van Kemnade and Los 2003: 101). The doubling data reveal that the decline of the phonologically weak prefix *a-* had advanced to a stage in which it has so little semantic content left that the predicative role (encoded in the R-LCS) is taken over by particles (van Kemnade and Los 2003: 108). This situation was not restricted to the prefix *a-* but extended to the entire prefix system, which by the beginning of the Middle English period had largely disappeared as a productive system (with the exception of some lexicalised cases). The particles remained and took over the function of the prefixes. This process had already started in the Old English period. See Chapter 6 for a more detailed discussion of the decline of the ICV system in English.
As in Dutch and German, the syntax of Old English separable complex verbs (SCVs) is closely interwoven with OV/VO word order and interacts with finite verb movement. Koster (1975) has shown for Modern Dutch that a clause-final particle is stranded by verb-movement in main clauses. While both the OV/VO issue and the V-movement issue in Old English are more complicated than in Modern Dutch and German, it is quite clearly the case that Old English shares with Dutch and German the property of stranding the separable prefix by V-movement (cf. Fischer et al. 2000; van Kemenade 1987; Koopman 1985). This is illustrated in (78).

(78) þa sticed him mon þa eagan ut
 then stuck him someone the eyes out

‘then his eyes were gouged out’
(coorosiu, Or_4:5.90.13.1822)

In (78), the particle ut ‘out’ has been stranded by V2.

The distribution of Old English particles is discussed at length by Hiltunen (1983). Table 3 displays the distribution in late Old English prose.

<table>
<thead>
<tr>
<th>late OE</th>
<th>prtt(...V)</th>
<th>V(...)prrt</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>main</td>
<td>45</td>
<td>31</td>
<td>102</td>
</tr>
<tr>
<td>coordinate main</td>
<td>98</td>
<td>50</td>
<td>97</td>
</tr>
<tr>
<td>subordinate</td>
<td>60</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td>total</td>
<td>203</td>
<td>47</td>
<td>229</td>
</tr>
</tbody>
</table>

Table 3: The position of the particle in late Old English prose (Hiltunen 1983: 108)

Hiltunen’s (1983, Chapter 3) discussion of the position of Old English particles with respect to the verb does not distinguish between finite and non-finite verbs. This means that his figures in Table 3 provide a general picture only, without illuminating the role of finite verb movement or the extent to which particles follow a non-finite verb, signalling a base-generated VO order (though he does provide some discussion of the position of the particle with respect to the non-finite verb; Hiltunen (1983), Chapter 4).

The high percentage of postverbal particles in main clauses (69%) can largely be attributed to the verb-second rule and is therefore to be considered a derived order. The high percentage of postverbal order in the main clause context contrasts sharply with the percentage of postverbal particles in subordinate clauses. In the subordinate clause context, the preverbal position predominates (67% preverbal). This is due to the fact that finite verb
movement is less prominent in subordinate clauses than in main clauses (cf. Pintzuk 1991, 1999).

Though Old English particles may surface postverbally as a result of finite verb-movement (cf. (78)), their position is dominantly preverbal. Some examples of preverbal particles are given in (79)–(82).

(79) Donne Moyses his handa up ahof, þonne hæfde Israhela folc sige; when Moses his hands up lifted, then had Israel’s people victory
‘when Moses raised up his hands, then Israel’s people had victory’
(coexodusP, Exod [Ker]:17.11.63)

(80) And seo helle þone deofel ut adraf,
and the hell the devil out drove
‘and Hell drove out the devil’
(conicodC, Nic [C]:282.274)

(81) and se hreofla, þe hym ær lange on wæs, wearð þa
and the leper, who him before long on was, became then
sona nyðer afeallen
soon down fall
‘and the leper, who had been so for a long time, soon fell down’
(covinsal, VSal 1 [Cross]:33.7.274)

(82) & licge þær astreht eallum lichaman ætforan þere dura
and there stretched out all bodies before the door
oð ealle ofer hine inn beon agangen,
until all over him in are gone
‘and there all the bodies lie stretched out in front of the door until all were
gone in over him’
(cochdrul, ChrodR 1:27.11.415)

In example (79), the particle *up* combines with a finite verb, *ahof* "lifted", in a subordinate clause. The particle and the verb are in their base position (V2 has not applied) and the particle is immediately preceded by a direct object, *his handa* 'his hands'. The same word order appears in example (80), in which the particle *ut* 'out' and the verb *adraf* 'drove' are in their base positions and are preceded by a direct object, *the devil*. Unlike (79), however, the relevant clause in (80) is a coordinate main clause, not a subordinate clause. In the main clause in (81), the SCV consists of a non-finite verb *afeallen* 'fall', which indicates that the verb is in its base position. Similarly, in (82), the verb *agangen* 'gone' is non-finite, which signals that it has not undergone movement. The particle *inn* 'in' is separated from the non-finite verb *agangen* 'gone' by the finite *beon* 'are'. This indicates that the particle has moved to a higher position in the clause. In all four examples, the particle functions as a
resultative predicate, denoting the endstate of the object. The reader is referred to §4.3 for a more detailed investigation of the position of Old English particles with respect to the verb. Old English SCVs are often accompanied by a prepositional phrase. Examples are presented in (83).

(83) a. þæt þu ut ado þæt mot of þines broður eagan.
that you out do that speck of your brother’s eyes
‘that you put the speck out of your brother’s eyes’
(cowsgosp, Mt [WSCp]: 7.5.358)
b. ær hi ut of þam geweorce foron.
before they out of the fortification went
‘before they departed from the fortification’
(cochronC, ChronC [Rositzkel]: 896.16.970)

The prepositional phrases in (83a,b), of þines broður eagan ‘of your brother’s eyes’ and of þam geweorce ‘from the fortification’, specify the location of the object þæt mot ‘the speck’ and the particle, ut in both sentences, denotes the direction of the object. In Present-Day English, the location (McIntyre’s (2001) ’reference object’; Svenonius’ (to appear) ‘Place’) is hardly ever expressed and may be deduced from the context. The focus in Present-Day English is on the direction (Svenonius’ (to appear) ‘Path’), which is expressed by the particle. Note that only transparent particles have a directional meaning in Present-Day English. The non-transparent meaning of many English VPCs may be why the location is often left unspecified: there is simply no location to be expressed.

It is sometimes difficult to establish whether an SCV is involved in these cases or whether we are dealing with an adverb+preposition combination. This is especially the case in examples in which the ‘particle’ is followed by a preposition, such as up on, in to and on to, which have developed into a single word of the category preposition (upon, into, onto). I have excluded examples in which in/on is followed by to and up is followed by on. Other such collocations, like out of and up to, have never reached the single word status and should therefore not be analysed as complex prepositions (Huddleston and Pullum 2002: 616). This is illustrated by the examples in (84), taken from Huddleston and Pullum (2002: 616).

(84) a. I ran through the tunnel.
I ran through.
b. I ran out of the house.
I ran out.

The examples in (84b) show that of disappears when the NP is left out (*I ran out of), showing that out of cannot be a complex preposition. In Old English, there is also evidence against analysing out of as a complex preposition. Such evidence is provided by examples such as the one in (85).
& draft out the clerks from the diocese, …

(85) and expelled the clerks from the diocese, …

In the example in (85), the prepositional phrase of þe biscoprice ‘from the diocese’ modifies the particle ut ‘out’, but is separated from it by the direct object þa clerca ‘the clerks’. The combination ut of clearly does not form a complex preposition. I have excluded examples in which ut ‘out’ is immediately followed by a prepositional phrase headed by of from my database (cf. Denison (1981), who also excludes out of examples from his data).9

4.2.3.3 Old English SCVs in the literature

Hiltunen’s (1983) study is the only lengthy account of Old English (and early Middle English) particles. In literature on Old English syntax, particles are often presented as markers of the underlying position of the verb (Koopman 1985, 1990; Van Kemenade 1987; Pintzuk 1991, 1999; Fischer et al. 2000; among others). In the next sections, I will review Hiltunen’s work on Old English SCVs and will then turn to a discussion of the pre-secondary predicate analyses by Koopman (1985, 1990), Van Kemenade (1987) and Pintzuk (1991, 1999).

Hiltunen (1983)

Hiltunen (1983) provides a lengthy and systematic description of the syntax and semantics of particles in late Old and early Middle English. His focus is on the rise of the VPC (Hiltunen: ‘phrasal verb’) pattern and after a discussion of the (decline of the) prefixes, Hiltunen investigates particles in the transition from Old to Middle English. He does this in the light of the loss of OV orders from Old English onwards. He provides a detailed discussion of the attested word order patterns, describing which elements can intervene between the verb and the particle or which elements can surround the verb-particle combination. He investigates the influence of clause-final prepositional phrases on the development of the postverbal position of the particle and his findings support Meroney’s (1943) view that a prepositional phrase “draws the particle out of the preverbal position” (Hiltunen 1983: 137, quoting from Meroney 1943: 8-10). Hiltunen observes that the

9 Similar ‘out of’ examples are also found in Old Norse, (i) (from Faarlund: 2004: 117 (25a)).

Barlaams ok Josaphats saga.

(i) gekk út ór eyðimorkinni
 went ut of desert.D-the
 ‘came out from the desert’ (Barl 9.23)

Faarlund analyses such cases as “a preposition governing a prepositional phrase” (Faarlund 2004: 117).
prepositional phrase expresses the “exact specification” of the action denoted by the verb, whereas the particle conveys “the direction or location of the action of the verb in general terms” (Hiltunen 1983: 136-137). Hiltunen concludes: “The view that the postverbal position of the phrasal adv. is the result of a development whereby locative modifiers generally came to be placed after the verb was already expressed by Curme (1914. 320-361), and has later been repeated by others, e.g. Marchand (1969. 100)” (Hiltunen 1983: 138).

As already mentioned in the subsection on syntax in §4.2.3.1, Hiltunen’s (1983) figures for the position of the particle with respect to the verb reveal nothing about the underlying position of the verb and the particle, because no distinction is made between finite and non-finite verbs. This was the starting point for my study of the syntax of particles in the transition from Old to Middle English (see §4.3).

Koopman (1985, 1990)

Assuming that Old English has underlying SOV word order, Koopman (1985, 1990) considers the preverbal particle order to be basic.10 He further assumes that SCVs form lexical combinations, which have the structure in (86) (from Koopman (1985: 93), his example (16)), which is based on Koster’s (1975) structure for Dutch SCVs.

\[
\text{V} \quad \text{part} \quad \text{V}
\]

The verb and the particle (part) are generated under one V node, which Koopman (1985: 97) suggests is the result of optional reanalysis of the particle and the verb. The analysis of SCVs as lexical combinations allows him to account for examples in which not only the verb, but also the particle have moved to the front of the clause. Consider example (87), from Koopman (1985: 95), his example (26).

\[
\text{and aweg gelædde micelne dæl þæs folces to his rice}
\]

‘and led away a great part of the people to his kingdom’

(ÆChom II, 18.21)

In most cases involving finite verb movement the particle is left behind in its base position (cf. Koster 1975 for Dutch; Koopman 1985: 94, among others). It follows from this observation that the particle aweg ‘away’ in (87) must have been moved as well.

Koopman’s structural analysis of Old English SCVs, (86), raises an apparent problem for examples in which the particle is stranded after finite verb movement. Since he assumes that SCVs form a complex word formed in the lexicon, it is not clear how examples in which the particle is detached from the verb can be derived. One solution would be to adopt a verb

excorporation rule which allows the verb to leave the complex V, thus stranding the particle. This is problematic, however, because syntactic operations cannot affect parts of a morphological word (Lexical Integrity; cf. Chapter 2). Instead, Koopman proposes that the reanalysis of the particle and the verb (deriving the complex verb) is optional (Koopman 1985: 97). In this way, examples in which the particle is stranded after finite verb movement can be explained without the theoretically undesirable excorporation rule. There are two problems with this analysis. First of all, it is unclear what triggers the reanalysis. Secondly, Koopman does not discuss the precise non-reanalysed SCV structure.

As for the further distribution of the particle, Koopman (1985: 95) observes that it can occur in a variety of positions, which makes a movement rule for particles difficult to motivate. He therefore proposes that the position of Old English particles is free, much like that of adverbs such as þa ‘then’. The link between the verb and the particle is established by the assumption that the particle forms part of the verb’s subcategorisation frame in the lexicon. Case assignment is lexical rather than structural, which means that the order of VP elements is irrelevant, provided it is head-final. While it is true that Old English particles appear in various surface positions, I will show in §5.3 that this reflects only a restricted set of well-motivated movement operations.

Van Kemenade (1987)

Van Kemenade (1987) works from the assumption that Old English clause structure can be derived from underlying SOV order, in which particles are generated in immediately preverbal position. In line with Koopman (1985, 1990) and applying Koster’s tests for Modern Dutch to Old English, but showing that a wider range of orders follow from them, she compares Old English SCVs with their Modern Dutch counterparts. While SCVs in both languages look similar at first blush, she observes that there are in fact differences between the two. In Dutch, the particle and the verb are obligatorily separated in V2 clauses, (88), but this is not the case in Old English, (89) (van Kemenade 1987: 30).

(88) Jan vrolijkte zijn teamgenoten op.
 Jan happy-ed his team-mates up
 ‘Jan cheered up his team-mates’

(89) & syþþan upcymð deofles costnung
 and afterwards up-comes devil’s temptation
 ‘and afterwards the devil’s temptation arises’
 (cowgosp, Mk [WSCp]4.17.2421))

Example (89) is a coordinated main clause which often have OV word order in Old English (see the discussion of coordinate main clauses in §4.3.2.2). Beside the occurrence of non-separated SCVs in Old English V2 clauses, the Dutch pattern as depicted in (88) does in fact also occur in Old English, (90) (van Kemenade 1987: 30).
PARTICLES AND PREFIXES IN LATE OLD ENGLISH

(90) Davæfeolseassaaduneyafyrhtfordæmengle,
thenfelltheassdownafraidoftheangel
"Then the ass fell down, afraid of the angel"
(cootest, Num:22.27.4353)

Apparently, separation of the particle and the verb in Old English V2 clauses is optional (van Kemenade 1987: 30).

Another difference between Old English and Dutch SCVs is that the particle and the verb may not be separated in Dutch subordinate clauses, (91), while such separation is grammatical in Old English subordinate clauses, (92).

(91) a. *…datvrolijkteJanzijnteamgenotenop.
…thathappy-edJanhisteam-matesup
‘…that Jan cheered up his team-mates.’

b. …datJanzijnteamgenotenop-vrolijk-te.
…thatJanhisteam-matesup-happy-ed
‘…that Jan cheered up his team-mates.’

(92) gifCristscutehadaadun
ifChristcaststhendown
‘if Christ then casts himself down’
(cocathom1, ÆCHom I, 11:268.76.2052)

In Dutch, then, the particle always precedes the verb in subordinate clauses, but this is not always the case in Old English, even though the Prt V pattern is well-attested in Old English subordinate clauses too (van Kemenade 1987: 30). Thus, while Dutch particles mark the underlying position of the verb without exception, this does not appear to be the case with Old English particles. Consider the example in (93), from van Kemenade (1987: 31), her example (39b).11

(93) ðeathùsisicupoferðinemæðahæfen
thoughyouareupoveryourconditionraised
‘although you are raised above your condition’
(CP, 467,3)

In example (93), the separable prefix up occurs in a position to the left of the non-finite verb ahæfen ‘raised’ and is separated from that verb by a prepositional phrase. Since the verb is non-finite, it cannot have moved and therefore its position reflects a basic position. The particle in this example then does not represent the underlying position of the verb. The question then is how the particle came to occupy this position. Van Kemenade (1987: 38-39) assumes that up in (93) is not really a particle, but rather represents a modifier of the

11 CP=King Alfred’s Translation of Pope Gregory’s Cura Pastoralis.
prepositional phrase (see also Pintzuk 1991, 1999; Fischer et al. 2000). In Chapter 4, I discussed examples similar to the one in (93), and showed that they are difficult to analyse. The existence of examples in which the particle and the verb are adjacent, while the PP occurs in a position separated from the particle, (94), calls into doubt whether the particle is a modifier as suggested by van Kemenade.

(94) þæt þu ut ado þæt mot of þines broður eagan.
that you out cast the mote of your brother’s eyes
‘that you cast the mote out of your brother’s eyes’
(cowsgosp, Mt [WSCp]:7.5.358)

On the basis of examples such as (94), I will argue that it is in fact the prepositional phrase that ‘modifies’ the particle. Thus, these examples do contain an SCV, whose particle is modified by a prepositional phrase. In (94), I assume the prepositional phrase has been extraposed (or stranded, depending on the type of analysis), perhaps because it is considered a heavy element (cf. Hiltunen 1983: 136). This analysis also accounts for the example in (93), in which the particle has been separated from the verb by a prepositional phrase. In the analysis proposed here, the prepositional phrase is generated as an adjunct of the particle within the phrase headed by the particle. Thus, the particle ut ‘out’ in (94), despite being separated from the verb ahæfen ‘raised’, is in its base position (in keeping with van Kemenade’s OV analysis).

Van Kemenade gives two other examples in which the particle does not mark the underlying position of the verb. They are given in (95) (from van Kemenade 1987: 31, her examples (40a) and (41b)).

(95) a. þæt se deofol on anes blacan cildes hiwe teah ut ðone munuc
that the devil in a black child’s guise drew out the monk
by the hem his garment
‘that the devil in the form of a black child drew out the monk by the hem of his garment’
(AHth, I, 160)

b. þæt he wæarp þæt sweord onweg þæt he on handa hæfde
that he threw the sword away that he in hands had
‘that he threw away the sword that he had in his hands’
(Bede, 38, 20)

The particle ut ‘out’ in example (95a) is immediately postverbal and the object occurs after the verb and the particle. In (95b), the particle onweg ‘away’ occurs postverbally and is separated from the verb wæarp ‘threw’ by the direct object þæt sweord ‘that sword’. Van Kemenade analyses (95a) and (95b) as cases in which the particle does not mark the

12 AHth=The Homilies of the Anglo-Saxon Church, Thorpe (1846).
underlying position of the verb. Rather, the particles (as well as the direct objects) in (95a,b) must have been extraposed to the right of the finite verb. This is the only possibility, since van Kemenade's SOV analysis dictates that the finite verb remains in clause-final position in subordinate clauses (cf. Fischer et al. 2000: 194). As van Kemenade (1987: 39) observes, the two SCV word orders as represented by the examples in (96a,b) closely resemble the VPC word order alternation in Present-Day English. The Obj–Prt order in (95b) is an early instantiation of the 'small clause' order.

Pintzuk (1991, 1999)

Pintzuk (1991, 1999) investigates the position of the finite verb in Old English and presents an approach which adopts the Double Base Hypothesis (first proposed by Kroch 1989). According to the Double Base Hypothesis, word order variation is the result of competing grammars which differ with respect to the headedness of IP and VP. Thus, Pintzuk argues for synchronic competition between INFL-final and INFL-medial phrase structure, as well as for alternating OV and VO phrase structure. In the INFL-final grammar, INFL follows the VP and the word order is SOVI. In the INFL-medial grammar, INFL precedes the VP and the word order is SIOV. This goes against a unified OV analysis, in which it is assumed that all clauses are uniformly OV and INFL-final. The examples in (96) contain SCVs and represent INFL-final, (96a), and INFL-medial syntax, (96b). They are taken from Pintzuk (1991: 81,83).

(96) a. ðeah hit ær up-ahefen ti [I wære i] ‘although it was raised up before’

(P CP 34.6)

b. þæt hi hine [I sceoldon] þær adune niman ti that they him should there down take ‘that they should take him down there’

(Bede 322.1)

In (96a), the auxiliary wære ‘was’ is in postverbal position and moves to INFL, which is clause-final. In (96b), the modal sceoldon ‘should’ is positioned before the lexical verb. On an OV analysis, which Pintzuk adopts, the modal must have moved to this position from its underlying postverbal position. Pintzuk analyses clauses like this as INFL-medial, as indicated in (96b). Alternatively, such clauses could be analysed as INFL-final with verb projection raising (VPR) as illustrated in (97); see Pintzuk (1991: 82).

13 Pintzuk (1991, 1999) calls particle extraposition in Old English into doubt and sees examples such as the one in (95) as evidence for the existence of verb movement in subordinate clauses (cf. §4.2.3.2).

Under the double base hypothesis, then, (subordinate) clauses are either INFL-final or INFL-medial, rather than uniformly INFL-final. These two INFL positions are thought to have been in competition, but by the end of the Old English period, all clauses had become INFL-medial.

The distribution of Old English particles forms an important piece of evidence for Pintzuk’s (1991) claim that finite verb movement exists in subordinate clauses. She shows that, unlike the distribution of particles in Modern Dutch (Koster 1975), “the distribution of particles in Old English cannot be used quite as straightforwardly as evidence for underlying structure …” (Pintzuk 1999: 49). Pintzuk, aware of the difficulty of defining particles, because of their similarity to prepositions and adverbs for example, limits herself to cases which have three characteristics (Pintzuk 1999: 49-50). The first characteristic is that it can appear before and after the verb, as exemplified by the examples in (98), from Pintzuk (1999: 49-50).

(98) a. þæt he his stefne up ahof
 that he his voice up lifted
 ‘… that he lifted up his voice …’
(bede 154.28)

b. þæt he ahof upp þa earcan
 so that he lifted up the chest
 ‘… so that he lifted the chest up …’
(gd(c)42.6–7)

The examples in (98) show that up(p), in combination with a form of ahebban ‘lift’, counts as a particle, because it can be separated from the verb.

The second characteristic of particles identified by Pintzuk is that they “cannot be analysed as a preposition with a PP object or as a modifier of a PP” (Pintzuk 1999: 50). Thus, she excludes cases in which a preposition follows the ‘particle’, as in (99), from Pintzuk (1999: 50).

(99) a. þe þær wæs up atogen of þam wætere
 who there was up pulled from the water
 ‘… who was pulled up from the water.’
(gd(h) 116.9-10)

b. forðon ðe he astah up to heofenum
 because he went up to heaven
 ‘… because he went up to heaven …’
(echom i.182.29-30)
Although I agree with Pintzuk that the category of these ‘particles’ is not straightforward, and that some should be excluded from the data, I analyse the prepositional phrases in the examples in (99) as modifiers of the particles, rather than the other way around (see also the discussion of similar examples in the section on van Kemenade (1987) above). Both combinations, *upp atogen* and *up astigan* are attested without prepositional phrases, as illustrated by the examples in (100).

(100) a. *Snaw cymð of ðam ðynnum wætan, þe bið upp atogen*
 snow comes of the thin moisture, which is up pulled
 by the air
 ‘snow comes from the vaporous moisture, which is drawn up by the air’
 (cotempo, ÆTemp:13.1.371)

b. *and he eft up astah æfter his ðrowunge,*
 and then, after his suffering
 ‘and then, after his suffering, he went up’
 (coaelhom, ÆHom 13:200.1980)

These examples suggest that it is the prepositional phrase that modifies the particle in (99). The prepositional phrase specifies the location from or towards which the movement (i.e. the direction expressed by the particle) is going. In the examples in (100), this location is left implicit, as there is no prepositional phrase modifying the particle. Note that there is a prepositional phrase that follows the particle-verb combination in both examples in (100), but that this prepositional phrase clearly does not modify the particle (or, in Pintzuk’s analysis, is modified by the particle). Given the occurrence of the combinations *upp atogen* and *up astigan* without a prepositional phrase, in which *up* is clearly a particle, I will argue that the examples in (100) also contain particles, especially as there is no semantic difference between the combinations in (99) and (100).

The third and last characteristic put forward by Pintzuk is that particles do not change the valency of the verb. In examples where the ‘particle’ changes the valency of the verb from intransitive to transitive it could also be analysed as a preposition. This is illustrated by the example in (101) (Pintzuk 1999: 50, her example (25)).

(101) *þæt se cena iudas him wið-feohtende wæs*
 that the bold Judas him against-fighting was
 ‘… that the bold Judas was fighting against them …’
 (ÆLS 25.424–425)

In this example, *wið* transitivises the verb *feohtende ‘fighting’* and can be interpreted as a prefix or as a preposition (with *him* as its object) (cf. also Hiltunen 1983: 215), but not as a particle. Therefore this is not the best of examples to illustrate the point. More importantly, although I recognise the difficulty of distinguishing between prepositions, prefixes and particles, I disagree with this criterion, because the ability to change the valency of verbs is
one of the central characteristics of particles, in Old English as well as in later stages of English. The Old English example in (102) illustrates this.

(102) a. And heo ðæt reðe attor eall ut aspaw, and she that cruel poison all out spit
‘and she spit out all of the cruel poison’
(coaelive, 138.272)

b. and June gladly up aspryt twelf rihtinga; and June gladly up brings twelve rules
‘and gladly June brings forth twelve rules’
(cobyrhtf, ByrM 1 [Baker-Lapidge]:1.3.82.521)

In (102), the particle *ut* ‘out’ transitivises the verb *aspaw* ‘spit, vomit’. We clearly do not want to omit examples such as (102) from our data. Thus, while I second Pintzuk’s first criterion, I think her execution of the second criterion is too strict and I disagree with her third criterion for the reason mentioned above.

Pintzuk shows that the position of particles is different in subordinate clauses with modals or auxiliaries and clauses with only a lexical verb. This is shown in Table 4, from Pintzuk (1991: 88).15

<table>
<thead>
<tr>
<th>Clause type</th>
<th>Before main verb</th>
<th>After main verb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clauses with auxiliaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF clauses</td>
<td>24</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>VM clauses</td>
<td>60</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>Clauses with inflected main verbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF clauses</td>
<td>69</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>VM clauses</td>
<td>98</td>
<td>36</td>
<td>134</td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td>39</td>
<td>290</td>
</tr>
</tbody>
</table>

Table 4: The distribution of particles in Old English subordinate clauses (Pintzuk 1991: 88)

The figures in Table 4 show that particles quite often follow the main (i.e. lexical) verb in VM clauses with just a lexical verb (26.9%), but rarely do so in VM clauses which contain a modal or auxiliary (3.2%). According to Pintzuk (1991: 89), these figures provide evidence for the double base hypothesis, because it can explain the difference in distribution of particles in the various types of subordinate clauses. Moreover, the figures indicate that verb movement exists in subordinate clauses too, with concomitant stranding of the particle: the

15 Pintzuk’s database “consists of an exhaustive sample of the Old English subordinate clauses containing particles listed in the appendix of Hiltunen 1983, a detailed study of verb-particle combinations in prose texts from the Old English and Early Middle English periods.” (Pintzuk 1991: 79)
PARTICLES AND PREFIXES IN LATE OLD ENGLISH

particle occurs after the lexical verb in 37 cases out of 204 subordinate clauses with just a lexical verb (18%).

Pintzuk (1991: 89ff.) shows that the same postverbal positions are available for particles in subordinate clauses as in main clauses. This is evidence for the double base hypothesis, because it means that "the difference in the position of post-verbal particles in main clauses compared to subordinate clauses may then be attributable to the processes affecting the order of post-verbal constituents, rather than to a difference in structure" (Pintzuk 1999: 59). Pintzuk (1991: 92) gives 3 examples of subordinate clauses (out of 15 subordinate clauses (20.0%)) in which the particle occurs in a ‘main clause’ particle position. I will discuss these examples, the first of which is given in (103), in turn. The examples are taken from Pintzuk (1991: 92), her examples (43–45).

(103) gif Crist scute þa adun
 if Christ casts then down
 ‘if Christ then casts himself down’
 (ÆCHom I, 170.21-22)

The example in (103) shows the postverbal particle adun ‘down’ separated from the verb by the adverb þa ‘then’. In my own database, containing prose texts from the O3 and O34 period, I have found 6 examples of subordinate clauses showing this pattern. They are presented in (104).

(104) a. gif he urne swa up swa seo sunne.
 if he moved so up just as the sun
 ‘if he moved up just as the sun’
 (cotempo, ÆTemp:4.24.142)

b. forðan þe heo cyrd þær ongean eft suðweard
 because she goes there back again southwards
 ‘because she goes back southwards again’
 (cotempo, ÆTemp:4.44.169)

16 Under a unified OV analysis (e.g. van Kemenade 1987), particles are preverbal. Clauses in which the particle occurs after the lexical verb are derived by particle extraposition, as verbs never move to the left. Given that all subordinate clauses have the same underlying structure in the traditional analysis, we would expect the distribution of particles to occur with the same frequency in all types of subordinate clauses (Pintzuk 1991: 87). Pintzuk’s results go against e.g. van Kemenade’s claim that “the distribution of particles with respect to the position of other post-verbal elements differs in main and subordinate clauses” (Pintzuk 1999: 57).

17 In van Kemenade’s (1987) unified OV analysis, it is asserted that the positions available to Old English particles in subordinate clauses are the same as the positions of Present-Day English particles, while Old English particles may occur in any postverbal position in main clauses.

18 Example (103) also occurs in my database; I have not repeated it in (104).
In the examples in (104), the postverbal particle is separated from the verb by an adverb. Examples (104b,d) feature ongean ‘back’, an element whose categorical status is by no means homogeneous. It occurs as an adverb, preposition and particle, which makes it difficult to determine its status. I treat ongean in (104b,d) as a particle, because the combination with the verbs cyrran ‘go’, (104b), and feran ‘go’, (104d) is attested in the data several times. Clark Hall (1960) lists ongeancyrran as a combination, meaning ‘to return’. He does not list ongeancyrran, however, but because of its semantic likeness with ongeancyrran I analyse it as an SCV.

Like that of ongean ‘back’, the status of ofer ‘over’ in (104c) is not straightforward either. It predominantly occurs as a preposition or as a prefix, but it also appears as a particle, in which case it means ‘over, across’ (cf. Chapter 4). While it is clearly not a prefix in (104c), it could in principle be a preposition or a particle. The meaning of ofer as a preposition and ofer as a particle is the same: ‘over, across’. The ambiguity also arises from the possibility of adding a complement after ofer (e.g. ‘over the fence’), in which case it would appear to be a preposition. The same situation arises in the Present-Day English wipe off-type examples, which show the alternation wipe the crumbs off vs. wipe the crumbs off the table. In the former, off is a particle, whereas in the latter it appears to be a preposition, complemented by the noun phrase the table. In the former, off is a particle, despite the existence of a PP alternative. I therefore analyse ofer ‘over, across’ in (104c) as a particle rather than as a preposition.

The examples in (104) confirm Pintzuk’s claim that particles in Old English subordinate clauses have the same positions available to them as particles in Old English main clauses.

The next example Pintzuk (1991: 92) adduces as evidence is presented in (105).
The example in (105) requires some comment. Firstly, forþon ‘because’ can be a coordinating conjunction, in which case the clause is a main clause displaying V2 to C. Secondly, the postverbal particle upp ‘up’ is separated from the verb by the negative adverb naht ‘in no way’ and an NP, ungelic trymnes ‘different confirmation’. The NP ungelic trymnes ‘different confirmation’ is in fact the underlying object of cymð ‘comes’, which means that cymð ‘comes’ is an unaccusative verb and that the intervening NP is a complement.19

The third and last example Pintzuk presents as evidence for the position of particles in subordinate clauses is given in (106).

In (106), the postverbal particle aweg ‘away’ is separated from the verb screadian ‘prune’ by an adverb, symle ‘always’, an NP complement, leahtras ‘the sins’, and a prepositional phrase, þurh heora lare ‘by their teaching’. It is very evident from this example that more constituents may intervene between the verb and the postverbal particle than just an NP complement. I have 4 examples of subordinate clauses in my database in which other material than an NP complement intervenes between the verb and the postverbal particle. These examples are given in (107), not repeating example (106), which is one of my four examples.

19 The example is therefore not a counterexample, as Pintzuk (1999: 58) claims, to van Kemenade’s (1987) observation that postverbal particles may be separated from the verb by at most one NP complement. It is only a counterexample to the extent that there is another intervening element, the negative adverb.
b. ær se bremakyning Gundoforusthecyrde to ðære scire
before the famous king Gundoforus went to the tribe
ongean.
‘before the famous king Gundoforus went back to the tribe’
(coaelive, ÆLS [Thomas]:111.7616)
c. þa ða se casericom mid eadmodnysseto,
when the emperor came with kindness towards
‘when the emperor arrived with kindness’
(coaelive, ÆLS [Exalt of Cross]:106.5629)

In the unaccusative example in (107a), the quantitative adjective ealle ‘all’ has been stranded between the verb and the postverbal particle after movement of hi ‘they’. In examples (107b,c), the postverbal particle is separated from the verb by a prepositional phrase.

In addition, Pintzuk (1991: 92–93) provides 2 examples in which the subject is the intervening element. One example is the one given in (105), the other one is presented in (108) below, taken from Pintzuk (1991: 93), her example (48).

(108) þæt þær eode fyrumut
that there went fire out
‘that the fire went out there’
(GD(C) 123.27)

Like the example in (105), the verb in this example is unaccusative, which means that the subject fyrum ‘fire’ is in fact the verb’s complement underlyingly. This example therefore does not show that material other than NPs may intervene between the verb and the postverbal particle in Old English subordinate clauses.

From the examples in (105) and (108), Pintzuk (1991: 93-94) concludes that the postverbal positions available for particles in main clauses are also available for particles in subordinate clauses. Not all examples Pintzuk adduces are representative, however, and it should also be noted that PPs and AdvPs intervene between the verb and the particle in subordinate clauses very infrequently compared to main clauses. Pintzuk proposes that these orders are derived by postposition in both main and subordinate clauses.20 According to Pintzuk, these examples also provide evidence against the uniform OV analysis of Old English subordinate clauses. However, most of the word order patterns in these examples can be analysed as involving verb movement, with the particle marking the base position of the verb and therefore do not pose a problem for a unified OV analysis.

20Thus rejecting van Kemenade’s rule of particle movement in subordinate clauses.
Conclusion

None of the studies discussed in this section, with the exception of Koopman (1985, 1990), offer a principled analysis of Old English SCVs. Hiltunen’s (1983) study is a lengthy description without providing a formal analysis of the Old English SCV. The other analyses mainly consider particles as a syntactic diagnostic for finite verb movement and are not concerned with the exact status of particles. The exception to this is Koopman (1985, 1990), who proposes that Old English particles optionally form a morphological complex with the verb. The work of Hoekstra (1988) on small clauses has fostered proposals that verbal particles in Germanic languages are secondary predicates. Thus, Zwart (1993) treats Dutch particles as secondary predicates in a small clause configuration. Fischer et al. (2000) were the first to apply this insight to Old English, which has since also been put forward by van Kemenade and Los (2003), Elenbaas (2003, 2006b). The reader is referred to Chapter 5 for a discussion of Fischer et al.’s (2000) analysis.

4.3 A corpus study of Old English particles

4.3.1 The corpus

The York-Toronto-Helsinki Parsed Corpus of Old English Prose (YCOE; Taylor et al. 2003) is a 1.5 million word syntactically-annotated corpus, which can be searched using the search engine CorpusSearch (Randall 2003). The texts included in the YCOE are divided into four main time periods, listed in (109).

(109) Period O1 (– 850)
Period O2 (850– 950)
Period O3 (950–1050)
Period O4 (1050–1150)

The texts are grouped by their manuscript date. When the text’s manuscript date deviates from its date of composition, it is classified by both dates. For example, a text whose composition date lies between 950–1050 (Period O3), but whose manuscript date lies between 1050–1150 (Period O4) is classified as O34.

My study of the diachrony of English VPCs mainly concentrates on the transition from the Old English to the Middle English period (cf. Hiltunen 1983), because the construction underwent some major changes in this transitional period. In my investigation of SCV word order patterns in Old English, I have therefore concentrated on texts from the late Old English period, and have excluded the two early periods O1 and O2. I have also excluded the O4 period. The reason for this is that texts from the O4 period are not representative of the syntax of the rest of the Old English period (cf. Allen 1995: 18–19, who excludes texts from the late eleventh and early twelfth centuries for precisely this reason). I have searched...
texts from the O3 period, which contains more reliable data than the O4 period and which is also the most sizeable of the four periods.21

The texts studied are mainly written in the West-Saxon dialect, spoken in Wessex, in the South and South-West of England. The West-Saxon dialect was the most prominent of the four Old English dialects, the three others being Kentish, Mercian and Northumbrian (the latter two are together known as Anglian) and became the literary ‘standard’. The dominance of West-Saxon was (partly) due to the influence of King Alfred (c.849–899). Some of the texts from the O3 period are translations from a Latin original.

4.3.2 Results of the corpus study

Finite verb movement plays a prominent role in the Old English period, and often interferes with basic word order patterns. For this reason, it is important to distinguish between finite verbs and non-finite verbs when studying Old English word order patterns. As already mentioned in §4.2.3.2, Hiltunen (1983) does not make this distinction, which means that his data provide only a general picture of the Old English situation. In order to look beyond this general impression, I performed a corpus study using the York-Toronto-Helsinki Parsed Corpus of Old English Prose (YCOE; Taylor et al. 2003), keeping finite verbs and non-finite verbs apart. I performed the searches using CorpusSearch (Randall 2003). The distinction between finite verbs and non-finite verbs allows us to filter out those cases in which finite verb-movement causes the particle to surface postverbally. As we will see, my data confirm the general picture sketched by Hiltunen, but for the reasons just mentioned they offer an important refinement of that picture.

I distinguish between four main particle positions for Old English (abstracting away from some minor variation), each of which occurs with finite and non-finite verbs.

(110)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prt–Vf/Vnf</td>
<td>particle is immediately preverbal, finite or non-finite verb</td>
</tr>
<tr>
<td>Prt…Vf/Vnf</td>
<td>particle is preverbal, verb is finite or non-finite</td>
</tr>
<tr>
<td>Vf/Vnf–Prt</td>
<td>particle is immediately postverbal, finite or non-finite verb</td>
</tr>
<tr>
<td>Vf/Vnf…Prt</td>
<td>particle is postverbal, verb is finite or non-finite</td>
</tr>
</tbody>
</table>

These patterns are represented in Tables 5a and b for the O3 period, which provide the figures resulting from my searches. The percentages in the tables are deduced using the grand total (i.e. the total number of preverbal and postverbal cases for each clause type).22

21 See Appendix I for a complete list of O3 texts by YCOE (Taylor et al. 2003) filename, including the text name and a reference to the text edition.

22 M = main clauses, CM = coordinate main clauses, S = subordinate clauses.
Table 5a: The position of the particle with respect to the finite verb in the O3 period

Table 5b: The position of the particle with respect to the non-finite verb in the O3 period

Tables 5a and b show that the preverbal position is the dominant position of particles in the O3 period. This is clear from the figures of the distribution of particles with respect to the finite verb in subordinate clauses (Table 5a), as well as from those of the distribution of particles with respect to non-finite verbs (Table 5b). In main clauses, and to a lesser extent also in coordinate main clauses, the role of finite verb movement is clearly discernable. Table 5a shows that the particle is stranded by verb movement in 450 out of 639 main clauses (70.4%) and in 111 out of 205 coordinate main clauses (54.1%). These figures
contrast with those for subordinate clauses (Table 5a). In this context, the particle occurs in a position before the finite verb in 385 out of 459 subordinate clauses (83.9%), reflecting the minor role of finite verb movement in subordinate clauses (cf. Pintzuk 1991, 1999).

The cases in which the particle (immediately) follows a non-finite verb are significant in view of the transition to postverbal particle order (cf. Chapter 6 and 7). I take these orders to represent the first instances of underlying postverbal order, assuming that particles are not allowed to extrapose.

4.3.2.1 SCVs in main clauses

The position of the particle is predominantly postverbal in Old English main clauses. The figures for main clauses in the O3 period are presented in Tables 6a and b, repeated from Tables 5a and b.

<table>
<thead>
<tr>
<th></th>
<th>Preverbal</th>
<th></th>
<th></th>
<th>Postverbal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–Vf</td>
<td>prt…Vf</td>
<td>total</td>
<td>Vf–prt</td>
<td>Vf…prt</td>
<td>total</td>
<td>Vf–prt</td>
<td>Vf…prt</td>
<td>total</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>O3</td>
<td>180</td>
<td>28.2</td>
<td>9</td>
<td>1.4</td>
<td>189</td>
<td>29.6</td>
<td>182</td>
<td>28.5</td>
<td>268</td>
</tr>
</tbody>
</table>

Table 6a: The position of the particle with respect to the finite verb in main clauses in the O3 period

<table>
<thead>
<tr>
<th></th>
<th>Preverbal</th>
<th></th>
<th></th>
<th>Postverbal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–Vnf</td>
<td>prt…Vnf</td>
<td>total</td>
<td>Vnf–prt</td>
<td>Vnf…prt</td>
<td>total</td>
<td>Vnf–prt</td>
<td>Vnf…prt</td>
<td>total</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>O3</td>
<td>86</td>
<td>83.5</td>
<td>0</td>
<td>0.0</td>
<td>86</td>
<td>83.5</td>
<td>10</td>
<td>9.7</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6b: The position of the particle with respect to the non-finite verb in main clauses in the O3 period

Main clauses in which the particle is immediately preverbal reflect basic word order. Examples are given in (111).

(111) a. Heo of genimð þone scruf & þone teter.
She off takes the scabies and the eczema
‘She takes away the scabies and the eczema’
(coherbar, 46.6.957)
PARTICLES AND PREFIXES IN LATE OLD ENGLISH

b. þa nolde he adun asceotan. for ðon ðe he onscunode then not-wanted he down fall because he hated þone gilp the boasting

'Then he did not want to fall down because he hated pride'
(cocathom1, ÆCHom I, 11:268.76.2054)

In (111a), the particle 'off, away' immediately precedes the finite verb genimð 'takes'. The direct object NP, which consists of two coordinated NPs, follows the SCV and has possibly been extraposed because it is a 'heavy' NP. The particle adun 'down' in (111b) immediately precedes the non-finite verb asceotan 'fall'.

A preverbal particle may be separated from the verb by various elements (cf. §4.2.3.1). Examples are given in (112).

(112) a. & nyðer se astigað þa ðe on hyre middele synt,
and down not descend those who in their midst are

'and those who are in their midst do not descend down'
(cowsgosp, Lk [WSCp]:21.21.5380)

b. & se syððan to herfest eft ongean hider to lande com.
and he after at autumn again back hither to country comes

'And after the autumn he comes back to the country again'
(cochronE, ChronE [Plummer]:1105.3.3415)

In (112a), the negative marker ne intervenes between the particle nyðer 'down' and the finite verb astigað 'descend'. The subject is heavy (it contains a relative clause) and has been postposed. In (112b), an adverb and a prepositional phrase intervene between the particle ongean 'back' and the finite verb com 'comes'. This is in fact the only example in my corpus in which more than one element (other than a negative marker, a modal, an infinitive marker, or a stranded preposition; cf. §4.2.3.1) intervenes between a preverbal particle and the (finite) verb. The prepositional phrase modifies the particle ongean. The intervening element between the preverbal particle and the finite verb may also be a subject, (113).

(113) Niðer he ahreas
don he fell

'Down he fell'
(cocathom1, ÆCHom I, 11:270.111.2078)

The particle niðer 'down' in (113) has been topicalised, indicating that it carries primary stress and emphasising its syntactic independence.

I found no examples in which the preverbal particle is separated from a non-finite verb (pattern Prt…Vnf in Table 6b) in O3 texts.

As already pointed out in the first part of §4.3.2, the dominance of the postverbal position in main clauses can be attributed to finite verb movement. The pattern Vc…Prt
provides the most conclusive evidence for finite verb movement. Examples of this pattern are given in (114).

(114) a. ða wearp se broðor þæt glæsene fæt ut æt ðam ehðyrle uppon ðam heordan stane.
‘Then the brother threw the glass vessel out through the window upon the hard stone’
(cocathom2, ÆCHom II, 11:104.425.2228)
b. ða code se hælend ut
‘Then the Saviour went out’
(cowsgosp, Jn [WSCp]:19.5.7285)
c. & cwæð. Gif ða Godes sunu sy feal nu adun.
‘and spoke: “If you are God’s son, fall down”’
(cocathom1, ÆCHom I, 11:266.16.1992)
d. ic þe asende sona forð mid him.
‘I will soon send you away with him’
(coaelive, AELS [Thomas]:13.7549)

In examples (114a,b), the finite verb has moved to the front of the clause, and it has inverted with the subject (se broðor ‘the brother’ in (114a) and se hælend ‘the Saviour’ in (114b)). The subject-verb inversion ensures that the finite verb occupies the second position of the clause (V2), the first position being occupied by the adverb ða ‘then’ in both examples. The status of ut ‘out’ in (114a) is open to some debate. Since it is immediately followed by a prepositional phrase at ðam ehðyrle ‘through the window’, it may be argued that it functions as an adverbial modifier to the prepositional phrase instead of forming an SCV with the verb wearp ‘threw’. I treat the combination utwearpan as an SCV on the basis of other occurrences of the combination without a prepositional phrase, as in the example in (115).

(115) a. & wearp Æðelstan ut.
‘And (he) threw Æthelstan out’
(codocu:3, Ch 1447 [Rob 44]:18.81)
b. & wurp þinne angel ut
‘and throw out your fish hook’
(cowsgosp, Mt [WSCp]:17.27.1177)
Apart from combining with *ut* ‘out’, the verb *weorpan* ‘to throw’ also combines with other particles, such as *of* ‘off, away’, *ap(p)* ‘up’, *niðer* ‘down’.

In the examples in (114c,d), the intervening adverb (*nu* ‘now’ in (114c) and *sona* ‘soon’ in (114d)), being non-VP material, indicates that the finite verb has moved. In (114c), the fact that the clause containing the SCV is imperative also signals verb movement, on the assumption that imperatives are characterised by verb movement to C (cf. Han 2000).

The pattern Vt Prt may also reflect verb movement, but we cannot be certain because there is no intervening material to provide a clue. Some examples are presented in (116).

\[
\begin{align*}
\text{(116) a. } & & \text{& Aaron } & \text{ahedle } \text{up hys hand,} \\
& & \text{and } & \text{Aaron raised up his hand} \\
& & \text{‘and Aaron raised up his hand’} & \text{(cootest, Exod:8.17.2642)} \\
\text{b. } & & \ldots \text{heo } & \text{abeah } \text{nyðer} \\
& & \ldots \text{she bowed down} \\
& & \text{‘… she bowed down’} & \text{(cowsgosp, Jn [WSCp]:20.11.7396)}
\end{align*}
\]

These examples are very modern in that they show an SVO word order pattern. The pattern V Prt becomes very frequent after the transition to the Middle English period (see Chapter 6).

The particle rarely follows a non-finite verb in Old English. I found 7 examples of the pattern Vnf…Prt in texts from the O3 period. An example is given in (117).

\[
\begin{align*}
\text{(117) } & & \text{On ane } & \text{healle } \text{pas mysstres was an ormace } \text{clif ascoren} \\
& & \text{on one side of the minster was a huge rock cut} & \text{rihte adune} \\
& & \text{right down} \\
& & \text{‘On one side of the minster a huge rock was cut right down’} & \text{(coaelive, ÆLS [Martin]:315.6159)}
\end{align*}
\]

This example again represents a very modern word order. The particle follows the non-finite verb and is modified by the adverbial modifier *rihte* ‘right’ (compare PDE *John looked the information right up*). The pattern reflects basic word order, as the verb is non-finite and cannot have moved.

There are 10 examples showing the pattern Vnf Prt. Some examples are given in (118).

\[
\begin{align*}
\text{(118) a. } & & \text{Gif } & \text{hwa ne } \text{wunað on me he byð } \text{aworpen } \text{ut swa} \\
& & \text{if any not abides in me he is thrown out as} & \text{twig branch} \\
& & \text{‘If a man does not abide in me, then he is thrown out like a branch’} & \text{(cowsgosp, Jn [WSCp]:15.6.7027)}
\end{align*}
\]
b. & on þis ilcan geare weard afluemed ut Osgot Clapa.
 and in this same year was expelled out Osgod Clapa
 'and in the same year Osgod Clapa was banished'
 (cochronE, ChronE [Plummer]:1044.2.2158)

Since the verb in the examples in (118a,b) is non-finite, the examples (118a,b) reflect basic
word order. In example (118b), the SCV *afluemed ut* ‘expel out’ occurs in a position before the
subject *Osgod Clapa*.

4.3.2.2 SCVs in coordinate main clauses

The word order situation in coordinate main clauses is somewhat different from that of
main clauses. This is because the syntax of coordinate clauses is sometimes more like that of
main clauses and sometimes more like that of subordinate clauses. The figures are presented
in Tables 7a and b, repeated from Tables 5a and b.

<table>
<thead>
<tr>
<th>CM</th>
<th>Preverbal</th>
<th>Postverbal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–Vf</td>
<td>prt…Vf</td>
</tr>
<tr>
<td>O3</td>
<td>93 45.4</td>
<td>1 0.5</td>
</tr>
</tbody>
</table>

Table 7a: The position of the particle with respect to the finite verb in coordinate main
clauses in the O3 period

<table>
<thead>
<tr>
<th>CM</th>
<th>Preverbal</th>
<th>Postverbal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–Vnf</td>
<td>prt…Vnf</td>
</tr>
<tr>
<td>O3</td>
<td>13 100</td>
<td>0 0.0</td>
</tr>
</tbody>
</table>

Table 7b: The position of the particle with respect to the non-finite verb
in coordinate main clauses in the O3 period

If we compare Tables 7a and b with the one for main clauses (Tables 6a and b), we notice
that the percentage of preverbal particles is higher in coordinate clauses than in main
clauses. Fischer et al. (2000: 188) note that this is because “coordinate main clauses show
OV as well as VO surface syntax” and refer to Mitchell (1985). Examples are given in (119)
and (120).

(119) & awylte þone stan aweig,
 and rolled the stone away
 ‘and (he) rolled the stone away’
 (cathom1, ÆCHom I, 15:300.22.2758)
(120) & þone cyng Dufenal ut adrafde.
and the king Dufenal out drove
‘and he expelled king Dufenal’
(cochronE, ChronE [Plummer]:1097.40.3296)

(119) contains an example of a coordinate main clause which behaves like a main clause in that it shows verb-movement. The example in (120) is representative of coordinate main clauses whose behaviour is more like that of subordinate clauses in showing OV word order, with the particle preceding the verb.

4.3.2.3 SCVs in subordinate clauses

In subordinate clauses, the position of the particle is predominantly preverbal. This situation is illustrated by the figures in Tables 8a and b, repeated from Tables 5a and b.

<table>
<thead>
<tr>
<th></th>
<th>Preverbal</th>
<th>Postverbal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–V_f</td>
<td>V_f–prt</td>
</tr>
<tr>
<td>S</td>
<td>N%</td>
<td>N%</td>
</tr>
<tr>
<td>O3</td>
<td>375</td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>83.9</td>
</tr>
<tr>
<td></td>
<td>44%</td>
<td>9.6%</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>6.5%</td>
</tr>
<tr>
<td></td>
<td>74%</td>
<td>16.1%</td>
</tr>
<tr>
<td></td>
<td>459</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 8a: The position of the particle with respect to the finite verb in subordinate clauses in the O3 period

<table>
<thead>
<tr>
<th></th>
<th>Preverbal</th>
<th>Postverbal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–V_nf</td>
<td>V_nf–prt</td>
</tr>
<tr>
<td>S</td>
<td>N%</td>
<td>N%</td>
</tr>
<tr>
<td>O3</td>
<td>138</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>1.7%</td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>81.0</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>11.5%</td>
</tr>
<tr>
<td></td>
<td>13%</td>
<td>7.5%</td>
</tr>
<tr>
<td></td>
<td>33%</td>
<td>19.0%</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 8b: The position of the particle with respect to the non-finite verb in subordinate clauses in the O3 period

The high percentages of preverbal particles in Table 8a reflect the limited role of finite verb movement in subordinate clauses (cf. Pintzuk 1991, 1999). Examples in which the particle is immediately preverbal are the absolute norm, (121).
(121) a. *Hwæt ða Godes miht mycelum wearð geswutelod swa þæt for then God’s power great was manifested so that þæs* maidenes favex hefeng hi eall abutan sona swa þa *the maiden’s hair fell her all about as soon as the* cwelleras hiire cloðas *of abrudon* executioners her clothes off take

‘For then God’s great power was manifested in such a way that the maiden’s hair fell all about her as soon as the executioners took off her clothes’

(coaelive, ÆLS[Agnes]:144.1809)

b. *Gif ic on Belzebub deofla ut-drife, on hwam utadrifað eower if I by Beelzebub devils out-cast, by whom out-cast your* bearn, sons

‘If I by Beelzebub cast out devils, by whom do your sons cast them out’

(cowsgosp, Lk [WSCp]:11.19.4578)

c. *& heo geseah þæt se stan aweg-anumen wæs fram þære and she saw that the stone away-taken was from the* byrgynne.

‘and she saw that the stone had been removed from the grave’

(cowsgosp, In [WSCp]:20.1.7374)

The figures in Tables 8a and b also show that preverbal particles are only rarely separated from the verb (13 out of 526 subordinate clauses with preverbal particles, 2.5%).

Beside the preverbal cases, there are also examples of subordinate clauses in which the particle follows the verb. Such examples may represent early basic postverbal order (when the particle follows a non-finite verb), (122) or they reflect finite verb movement. While not as prominent as in main clauses, the existence of verb movement in subordinate clauses is supported by examples such as the ones in (123).

(122) and het oðerne munuc awurpan ut þæt glæsene faet and ordered other monks throw out the glass vessel mid elc mid ealle. with oil altogether

‘and ordered the other monks to throw out the glass vessel with oil altogether’

(cocathom2, ÆCHom II, 11:104.422.2227)

(123) a. *gif Crist scute þa adun.* if Christ scute then down

‘if Christ then falls down’

(cocathom1, ÆCHom I, 11:268.76.2052)
b. ða cwæð an ðæs bisceopes þeowena hys cuða þæs eare sloh Petrus of; cut Peter off

‘Then spoke one of the bishop’s servants being his kinsman whose ear Peter cut off’

(cowsgosp, In [WSCp]:18.26.7237)

In example (123a), the adverb ða ‘then’ intervenes between the verb and the particle after the verb has fronted. In example (123b), the verb has fronted to a position before the subject Petrus ‘Peter’.

4.4 Conclusions and outlook

In this chapter, I presented a detailed overview of particle and prefix system of Old English, and discussed the differences (and similarities) between the ICV system and the SCV system. I discussed criteria for particle status, which have also been put forward elsewhere in the literature (e.g. Pintzuk 1991, 1999; Fischer et al. 2000). Apart from the obvious difference in syntactic separability, particles are distinguished from prefixes in several ways. Particles receive primary stress, while prefixes are unstressed. The meaning of particles is predominantly transparent, whereas that of prefixes is often abstract and non-transparent. These criteria are not only crucial for distinguishing between particles and prefixes, but also for keeping apart particles from prepositions and adverbs, which display a functional overlap.

I presented evidence for my claim that Old English particles are phrases, and that prefixes are bound morphemes. I discussed the thorny theoretical issue of how to analyse ICVs, which are to a large extent functionally equivalent to SCVs, and tend to be doubled and replaced by SCVs. The phrasal status of Old English particles provides insight into the shift from Prt–V to V–Prt, which boils down from the syntactically autonomous status of Old English particles.

The syntactic separability, primary stress and transparent meaning of particles provide evidence for an analysis in which Old English particles are treated as syntactic predicates. Despite the structural difference between particles and prefixes, they both express resultative semantics, denoting an endstate. More generally, the meaning of particles is transparent, whereas that of prefixes is non-transparent. As shown by Hiltunen’s (1983) study, there is a considerable functional overlap between particles and prefixes in Old English and the ICV system is demonstrably (e.g. prefix doubling) in decline in the Old English period. Its functions were taken over by the SCVs, which developed into the Present-Day English particles.

My corpus study of the distribution of Old English particles in the O3 (950-1050) period confirmed Hiltunen’s (1983) overall findings, but provides an important addition to these findings in distinguishing between finite and non-finite verbs. This distinction sheds more light on the position of Old English particles, for example to what extent it is stranded by
finite verb movement in main, coordinate and to a lesser extent in subordinate clauses. The role of finite verb movement in main clauses in the O3 period is very prominent, and the particle occurs in a postverbal position in a majority of cases. Although much less prominent, my findings for subordinate clauses show that finite verb movement plays a role in this context as well (cf. Pintzuk 1991, 1999).
5 A formal syntactic analysis of the Old English separable complex verb

In this chapter, I will propose a formal syntactic analysis of Old English separable complex verbs (SCVs), in which Old English particles are unambiguously secondary predicates and represent syntactic phrases. This analysis addresses a number of crucial issues raised by the grammatical status and syntactic position of Old English particles, unlike many analyses of Old English syntax (Mitchell 1985; van Kemenade 1987; Koopman 1985, 1990; Pintzuk 1991, 1999; among others), in which these questions are generally avoided. My analysis adopts the lexical decomposition structure proposed for Present-Day English in Chapter 3. The syntactic distribution of Old English SCVs is argued to reflect the interplay between the syntactic status of particles on the one hand and the grammatical options of Old English on the other. The analysis proposed in this chapter assumes a VO base for Old English, following Kayne’s (1994) proposal that the universal base-generated order is Specifier–Head–Complement (SVO) (cf. also Fischer et al. 2000).

This chapter is organised as follows: §5.1 considers Fischer et al.’s (2000) analysis of Old English SCVs, which is cast in the universal base hypothesis and treats Old English particles as small clause predicates. In §5.2, I propose a lexical decomposition analysis of Old English SCVs, which incorporates the structural analysis of Old English particles adopted in Chapter 4. In §5.3 I present an analysis of the syntax of Old English SCVs for which I adopt Biberauer and Roberts’ (2005) pied piping analysis of word order variation in Old English. The conclusions of this chapter are presented in §5.4.

5.1 Fischer et al. (2000): a secondary predicate analysis of Old English SCVs

Fischer et al. (2000) briefly discuss whether Zwart’s (1993) analysis of Modern Dutch can be applied to Old English SCVs, whose syntactic behaviour is comparable to that of Modern Dutch SCVs. Zwart’s analysis is cast in a Kaynian framework, according to which underlying VO order is universal (Kayne 1994). Zwart treats Dutch separable prefixes as secondary predicates in a small clause configuration. The relevant structural representation is given in (1).
In Zwart’s analysis, the two functional projections on top of VP, PredP and AgrOP, are the licensing domains for the predicate and the subject of the small clause (AgrP) respectively. Thus, the predicate PP moves to SpecPredP for checking reasons. The subject DP of the small clause (base-generated in SpecAgrP) moves to SpecAgrOP for case-checking reasons. This (partial) derivation is illustrated with an example in (2) and (3).

(2)
Jan *schoonde* zijn computer *op.*
John cleaned his computer up
‘John cleared his computer’

(3)
\[\text{AgrOP AgrO [PredP [VP [V *schoonde* Agr [PP *op*]]]]} \]
\[\text{zijn computer AgrO [PredP [VP [V *schoonde* Agr [PP *op*]]]]} \]

The partial derivation in (3) shows the movement of the subject of the small clause, *zijn computer* ‘his computer’, and that of the predicate of the small clause, *op* ‘up’. Not shown in (3) is the movement of the verb to a higher functional projection (C).

Fischer et al. (2000: 198) follow up Zwart’s small clause analysis, because it reflects the insight that Old English particles, like their Dutch cognates, function as secondary predicates. An Old English example with the small clause structure proposed by Zwart (1993) and adopted by Fischer et al. (2000) is given in (4).
(4) a. þa sticode him mon þa eagan ut
 then stuck him someone the eyes out
 ‘then his eyes were gouged out’
 (coorosiu, Or 4:5.90.13.1822)
b. \[AgrO AgrO [PredP Pred [VP [V sticode] [AgrP þa eagan Agr [pp ut]]]]

With the basic structure in place, Fischer et al. (2000: 199) suggest an analysis that can
account for the Old English SCV facts. They propose that checking of the predicate feature
can be done in two ways. The first option involves head-movement of the particle to Pred,
where it checks a predicate feature. This derivation, which derives a preverbal SCV order, is
illustrated in (5). The example from Orosius in (5a) is taken from Fischer et al. (2000: 189),
their example (18a).

(5) a. þæt hie mid þæm þæt folc ut aloccoden
 that they with that the people out enticed
 ‘that they might entice the people with it (to come) outside’
 (Or 5.3.117.5)
b. \[PredP [PredP [VP [V aloccoden] [AgrP þæt folc Agr [pp ut]]]]

b’. \[PredP tP+Agr+V+Pred [ut aloccoden] [VP tP+Agr+V [AgrP þæt folc tP+Agr [pp tP]]]]

As the bracketed substructure in (5b’) shows, the derivation involves incorporation of
the particle into the verb. The particle P, on its way to Pred, crosses the verb V and given
the restrictions on head-movement (cf. Baker 1988), the particle is not allowed to skip the V
head, and is forced to incorporate into V. Since excorporation is not a desirable theoretical
operation (cf. Lexical Integrity), the last step in the movement process has to involve
movement of the ‘complex’ V to Pred. This is depicted in (6).

(6) PredP
 Pred’
 Pred VP
 VP V’
 V V P tP+Agr
 Agr P ut
 AgrV (small clause) aloccoden
 V folc
 Agr’
The derivation involving movement of the particle to satisfy the predicate feature in Pred derives immediately preverbal particle orders. The derivation of example (5a) also involves movement of the object DP from SpecAgr (the subject position of the small clause) to SpecAgrOP (via SpecVP and SpecPredP), illustrated in (7).

\[
\begin{array}{c}
\text{AgrOP} \rightleftharpoons \text{þæt folc} \quad \text{AgrO} \quad \text{VP} \rightleftharpoons \text{alocoden}
\end{array}
\]

In addition to head-movement of the particle, Fischer et al. propose that the predicate feature in Pred can also trigger movement of the entire small clause (AgrP) to the specifier position of PredP (cf. Zwart’s 1993: 330 proposal that only the small clause predicate moves to SpecPredP). The derivation is presented in (8), again using example (5a).

\[
\begin{array}{c}
\text{AgrOP} \quad \text{þæt folc} \quad \text{AgrO} \quad \text{VP} \quad \text{alocoden}
\end{array}
\]

As the derivation in (8) shows, movement of the entire AgrP also yields orders in which the particle is in preverbal position. Note, that it can derive SCV orders in which the particle is in immediate preverbal position, as well as Prt…V orders, since the particle does not incorporate into the verb in this derivation. The case feature of AgrO can presumably be checked by movement of the small clause (i.e. AgrP) to SpecAgrOP. Fischer et al. do not go into any detail about this, and merely give an initial sketch to a VO (Kaynian) analysis of Old English SCVs.

SCV orders in which the particle follows the verb involve a derivation in which neither the particle nor the small clause subject (i.e. the object DP) moves overtly and checking takes place covertly instead (cf. Fischer et al. 2000: 199).

The VO analysis proposed by Fischer et al (2000: 198–199), based on Zwart’s (1993) analysis for Dutch separable prefixes, is very programmatic, as they themselves acknowledge. What they attempt to show is that the range of attested Old English SCV orders can be accounted for by an analysis within a universal base hypothesis. Although I am convinced that this is the case, I am not satisfied that the structural analysis adopted by Fischer et al. is sufficiently insightful. It captures the core observation that Old English particles are secondary predicates, but it is less apparent how it could account for the shift to postverbal particles in the transition to Middle English. The transition to postverbal particles in itself could probably be accommodated by assuming that overt checking was no longer obligatory, and could happen covertly instead, although it would be difficult to explain why this should have changed.

5.2 A lexical decomposition analysis of Old English SCVs

In Chapter 4 I adopted an analysis in which Old English particles are syntactic phrases and function as secondary predicates (cf. Fischer et al. 2000; van Kemenade and Los 2003). I will now elaborate this analysis in terms of the lexical decomposition approach proposed for Present-Day English in Chapter 3, because it captures the change-of-state semantics of
Old English SCVs. The structural representation I assume for Old English SCVs is given in (9b), illustrated with an example (9a).

(9) a. Hyt þa æhiwnesse ofgenimeð.
 it the pallor off-takes
 ‘It takes away the pallor’
 (coherbar, Lch I [Herb]:164:2.2407)

b. …
 …
 rP
 …
 V
 þa æhiwnesse
 V
 A
 PrtP
 GENIMEÐ
 of

The substructure in (9b) is the same as the lexical decomposition structure for Present-Day English VPCs introduced in Chapter 3. The verb is lexically decomposed into a CAUSE element hosted by r, a BE element on V, and a property-denoting element represented by (an abstract head) A. The lexical verb is derived by conflation (comparable to incorporation, i.e. head-movement; Hale and Keyser 1993; Baker 2003; Chapter 3 this thesis) of A with V and r.

In pre-Larsonian (i.e. pre-VP shell) analyses, the object is generated in the complement position of V. As the structure in (9b) shows, I assume the object is base-generated in the specifier position of VP, following Hale and Keyser’s (1993), Kratzer’s (1996) and Chomsky’s (1995a) work, in which it is argued that a VP has a rP projection which introduces the external argument (i.e. the subject). The verb moves to r to obtain its verbal properties (Chomsky 1995a). Once in r, it can assign accusative case to the specifier of VP. Verb movement to r is therefore obligatory. A finite verb, such as genimeð ‘throws’ in (9a), moves further to T (and to C in cases of main V2).

The structure of Old English SCVs differs in a crucial way from the structure of Present-Day English VPCs. Whereas Present-Day English particles are ambiguous between phrase and head (Chapter 3), Old English particles were shown to be syntactically autonomous elements (Chapter 4) and always project a phrase. Recall, however, that projection is constrained by the Structural Economy Principle, which favours heads above phrases. The Structural Economy Principle is given in (10), repeated from Chapter 3.
By the Structural Economy Principle, particles are heads by default and we therefore have to consider what makes Old English particles project a phrase. As shown in Chapter 4, there was robust evidence for the syntactic independence, and therefore phrasal status, of particles in Old English. Old English particles are separable from the verb by various elements and operations (V2, topicalisation), they carry primary stress, and they invariably have a transparent meaning. Thus, the fact that the less economical phrasal option is chosen for Old English particles is a result of the robust evidence for phrasal status of particles in this period.

The combination of the abstract adjectival head and the particle expresses the change-of-state meaning of the construction, just as in the structure for Present-Day English VPCs, as discussed in Chapter 3. Beside capturing the change-of-state semantics of Old English SCVs, the configuration also reflects the secondary predicate status of Old English particles. Rather than by means of a small clause, their secondary predicate status is represented by the structure of the VP, in which the object DP is generated in SpecVP. Thus, the object DP is predicated over by the verb and the particle. The VP is understood as a functional layer on top of the particle (cf. PredP in Zwart's 1993 analysis, FP in Zeller's 2001a analysis and P in Svenonius' (to appear) analysis).

A result of the phrasal status of Old English particles in the structural representation proposed here is that it will always be stranded by the conflation process. I will come back to this in §5.3.2, where I propose an analysis of the word order options of Old English SCVs.

5.3 An account of the word order options of Old English particles

5.3.1 Biberauer and Roberts (2005): Old English as a Spec-pied-piping language

In this section, I will discuss Biberauer and Roberts’ (2005) proposal for word order variation and change in Old and Middle English. In short, they propose that the various word order patterns found in Old and Middle English are the result of a single grammar which inherently allows for a certain amount of variation. More specifically, the grammar permits DP-movement, but also offers the option of large XP-movement operations. I will first discuss the theoretical assumptions that lie at the base of proposing these movement operations.

At the core of their analysis is the theoretical notion of pied-piping. They adopt Biberauer and Richards’ (2003, 2004) and Richards and Biberauer’s (2004a, 2004b) pied piping analysis and the theory of feature checking adopted in that analysis. The analysis makes use of the idea that a head can be a Probe and that it can be associated with an EPP feature (cf. Chomsky 2000, 2001, 2004). A Probe is an element with uninterpretable features
which searches ('probes') for a Goal, i.e. an element with matching interpretable features. The example in (11) illustrates how this checking mechanism works.

(11) a. \[TP \text{probe} [\text{vp was given } [\text{dp}_{\text{null}} \text{no warning}]] \]

b. \[TP [DP_{\text{null}} \text{no warning}] \text{probe} [\text{vp was given } \text{dp}_{\text{null}}] \]

In (11), T has an uninterpretable case feature and an EPP feature and acts as a Probe looking for a Goal that bears matching features. The Goal is the DP no warning, which is attracted by the Probe T and moves to SpecTP to check the Probe’s features, (11b).

It is important to note that Biberauer and Roberts’ (and indeed the current) notion of the Extended Projection Principle (EPP) deviates from how it was originally proposed by Chomsky (1981, 1982). According to Chomsky’s early definition of EPP, every clause must have a subject. Null subject languages were accounted for by allowing the EPP to be satisfied covertly. Like several linguists before them, Biberauer and Roberts challenge the EPP requirement on SpecTP and propose that the SpecTP position was not merely a subject position in earlier Germanic (cf. also Biberauer 2004). For Biberauer and Roberts (2005), EPP features are movement triggers. Thus, a head functioning as a Probe and bearing an uninterpretable (e.g. EPP) feature requires the presence of a Goal which carries the interpretable counterpart of the Probe’s uninterpretable feature. One way in which feature checking may be established is via an agreement relation between the Probe and the Goal, (12), from Biberauer and Roberts 2005: 7).

(12) Agree holds between a Probe P and a Goal G under the following three conditions:
(a) P must (asymmetrically) c-command G;
(b) P and G must be nondistinct in features; and
(c) there must be no Goal G’ \(\neq \) G such that P c-commands G’, G’ c-commands G and G does not c-command G’.

In this scenario, feature checking is established via Agree, not via a movement operation. When the Probe is associated with an EPP feature, however, checking of that EPP feature requires Agree as well as movement of the Goal (Agree+Movement). In theory, then, feature checking and movement can, but need not, coincide (Biberauer and Roberts 2005: 7). Crucially, feature checking in Agree+Movement cases (i.e. when the Probe bears an EPP feature) may involve movement of a larger constituent that contains the Goal in order to satisfy the Probe’s EPP feature. Thus, checking of a Probe’s EPP feature may be done by moving the Goal or by moving the constituent containing the Goal. This is schematised in (13), adapted from Biberauer and Roberts (2005: 8), their example (5).

1 As Biberauer and Roberts (2005: 7) note, this version of feature checking is different from Chomsky’s (1995a) proposal, according to which feature checking requires a local Spec-Head or Head-Head configuration.
If, in (13), X is T, YP is \(v \) and Z is head bearing D features (T probes for a D-bearing Goal), T’s EPP feature can be satisfied either by moving the Goal bearing the D-features (13a), or by moving the entire \(vP \), which contains the D-bearing Goal (13b). Which of the two options illustrated in (13) is chosen varies cross-linguistically (Biberauer and Roberts 2005: 8). They adopt the typology proposed by Richards and Biberauer (2004a), which is “based on the two parameters of the source of the D feature and the size of the category containing or bearing the D feature” (Biberauer and Roberts 2005: 8). They propose that the source parameter in Old English is D in Spec\(vP \) and that the size parameter in Old English is the constituent containing the Goal, (i.e. \(vP \)), which means that Old English is [+pied piping]. Languages like Old English are called spec-pied-piping languages (Biberauer and Roberts 2005: 9).

Importantly, the parameter settings for Old English are claimed, following Richards and Biberauer (2004a), to allow for two possible ways of satisfying T’s EPP feature. One option is movement of the subject DP (in Spec\(vP \)) and the other option is movement of the entire \(vP \) (containing the subject DP). Since the [+pied piping] parameter is interpreted as meaning ‘move an XP, not an X’ (Biberauer and Roberts 2005: 9), DP- and \(vP \)-movement, both XP movement operations, are permitted. Spec-pied-piping languages such as Old English therefore have two options of satisfying T’s EPP feature, both involving XP-movement.

Biberauer and Roberts (2005) further propose that \(v \), like T, has an EPP feature that has to be checked. Satisfaction of \(v \)’s EPP feature can equally proceed in two ways, either by DP-movement or by movement of the entire VP (both are XPs that contain the D-bearing Goal that \(v \) probes for). Thus, just as T’s EPP feature can be satisfied either by pied-piping Spec\(vP \) (containing the subject DP) to Spec\(TP \) or by moving the subject DP to Spec\(TP \) (stranding the rest of the \(vP \)), \(v \)’s EPP feature can be satisfied by pied-piping the entire VP (containing the object DP) or by moving the object DP (stranding the rest of the VP).

They assume that the Spec\(TP \) position could be filled by other elements than the subject in Old English and only came to be restricted to subjects, as required by the Extended Projection Principle (EPP), in later Middle English.

The optional spec-pied-piping grammar that Biberauer and Roberts propose for Old English allows them to account for the attested word order variation in this period. Old English (and other West-Germanic) OV orders, for example, are typically derived by large XP-movement operations (pied piping), whereas Old and Middle English VO orders are the result of DP-movement operations (stranding). An example of a subordinate clause with OV order, including its derivation is given in (14). Example (14a) is taken from Biberauer

\[(13) \]

a. \(\ldots X_{\text{PROBE}} \ldots [Y \ldots Z_{\text{GOAL}} \ldots] \ldots \)

b. \(\ldots X_{\text{PROBE}} \ldots [Y \ldots Z_{\text{GOAL}} \ldots] \ldots \)

\[2 \] Biberauer and Roberts restrict their discussion to subordinate clauses, because of V2 effects in main clauses (Biberauer and Roberts 2005: 11).
A SYNTACTIC ANALYSIS OF THE OLD ENGLISH SCV

and Roberts (2005: 14), their example (12), and its derivation (14b) is taken from their example (8) (Biberauer and Roberts 2005: 12).

(14) a. Ða se Wisdom þa þis fitte asungen hæfde . . .
when the Wisdom then this poem sung had
‘When Wisdom had sung this poem . . .’
(Boethius 30.68.6; Fischer et al., 2000: 143, 25)

b. (i) V-to-\(v\) raising

\[
\begin{array}{c}
\text{\(\mathcal{S}\)} \\
\text{\(\mathcal{I}_P\)} \\
\text{\(\mathbf{V} + \mathbf{v}\)} \\
\text{\(t_v\)} \\
\text{\(v\)} \\
\text{\(O\)} \\
\end{array}
\]

(ii) VP-to-(inner)Spec\(\mathcal{P}\) movement

\[
\begin{array}{c}
\text{\(\mathcal{S}\)} \\
\text{\(\mathcal{I}_P\)} \\
\text{\(\mathbf{V}\)} \\
\text{\(t_v\)} \\
\text{\(O\)} \\
\text{\(v\)} \\
\text{\(t_{VP}\)} \\
\end{array}
\]

(iii) merger of the subject in the topmost Spec\(\mathcal{P}\)

\[
\begin{array}{c}
\text{\(\mathcal{S}\)} \\
\text{\(\mathcal{I}_P\)} \\
\text{\(\mathbf{V}\)} \\
\text{\(t_v\)} \\
\text{\(O\)} \\
\text{\(v\)} \\
\text{\(t_{VP}\)} \\
\end{array}
\]
The derivation (14b) of the V-final subordinate clause in (14a) involves pied piping of VP to SpecTP. VP contains the D-bearing Goal (the object DP) which checks the EPP feature of the Probe v. T’s EPP feature is satisfied by pied piping of vP to SpecTP. T probes for a D-element, which is contained in vP, i.e. the subject DP.

As well as discussing verb raising and verb projection raising examples, Biberauer and Roberts (2005: 18) also consider Old English subordinate clauses which display the order $V...O$. In such examples, the verb need not be adjacent to the object and the object can be ‘light’. While some of these cases can be analysed as verb (projection) raising examples (Biberauer and Roberts 2005: 18), they also discuss an example which cannot be analysed in this way. It is given in (15a), taken from Biberauer and Roberts (2005: 18), their example (24). I also include the derivation (15b).

(15) a. þæt ænig mon atellan mæge ealne þone demm
that any man relate can all the misery
‘that any man can relate all the misery’ (Orosius 52.6–7; Pintzuk, 2002: 283, 16b)

b. (i) V-to-r raising

\[\text{V-to-}\text{r}\text{ raising} \]
In the example in (15a), the non-finite verb *atellan* 'relate' precedes the modal auxiliary *mæge* 'can', but in verb (projection) raising contexts the non-finite verb would typically follow the auxiliary. Instead, Biberauer and Roberts propose that *v* in Old English was “only optionally associated with an EPP feature” (Biberauer and Roberts 2005: 19). The presence or absence of an EPP feature on *v* has an interpretive effect and therefore no true optionality is involved. For example, it was possible for Old English objects to stay in situ for focusing reasons.
Given that \(v \) bears an optional EPP feature, the derivation of examples such as (15a) involves no VP pied piping nor object DP movement, (15b). The first step in the derivation is movement of the verb \(v \). The object DP staying in situ inside the VP, the next two steps in the derivation involve merging of the subject DP in Spec\(v \)P and merging of the auxiliary in T. This completes the \(v \)P and the complement of \(v \) (i.e. VP) becomes inaccessible to further syntactic operations. This is formulated in Chomsky’s (2000) Phase Impenetrability Condition (PIC), adopted by Biberauer and Roberts (2005: 15). It is given in (16).

(16) In a phase \(\alpha \) with head \(H \), the domain of \(H \) (i.e. its complement – MTB/IGR) is not accessible to operations outside \(\alpha \); only \(H \) and its edge are accessible to such operations.

Thus, the pied piping operation of \(v \)P to SpecTP (the next step in the derivation) does not affect the object DP in VP, which has already been spelled out after the completion of the \(v \)P phase.

Although Biberauer and Roberts adduce particle facts to support their proposal at various points, they do not give a unified analysis of Old English SCVs and Middle English VPCs. They are noncommittal about the exact position of particles, as is evident from the fact that they represent the particle preceding the object as well as following it. Thus, they apparently derive the order V–Prt–Obj from a structure in which the (Old English) particle precedes the object, given that they assume the derivation in (17b) for an example such as (17a) (Biberauer and Roberts 2005: 21; their example (27) with derivation (22), p.18).

(17) a. forðan be stream berð aweg Placidum
because the stream carries away Placidus
‘because the stream carries away Placidus’
(ÆCHom II, 11.95.97; Fischer et al., 2000: 194)
b. [TP S T V S T V ++ T [P S t v [VP tv O]]]

The derivation in (17b) “underlies superficially Modern English-like” (VO) word order patterns (Biberauer and Roberts 2005: 18). The derivation involves movement of the verb V to T via \(v \), as well as subject DP movement to SpecTP. Note that there is no movement of the object DP or of the entire VP. Biberauer and Roberts (2005: 19) propose that \(v \) has an optional EPP feature, which means that it is only present when there are observable semantic effects. Since there are no such effects in (17a), no EPP feature is realised on \(v \), therefore no movement is triggered. Although Biberauer and Roberts (2005: 21) do not make this explicit, the particle has to be assumed to precede the object (O) in (19b). Given that the VP as well as the object contained in it stay in situ, the surface order V–Prt–Obj can only be derived when the particle is positioned before the object. This contrasts with the derivation proposed by Biberauer and Roberts for Obj–V–Prt orders, in which they position the particle following the object. The example and derivation are given in (18) (Biberauer and Roberts 2005: 22; their examples (28) and (29)).
(18) a. þe þæt swuch fulðe speteð ut in any encre care
who that such filth spews out in any anchoress's ear
‘who spews out such filth in any anchoress’s ear’
(Ancrene Riwle I.35.29; Fischer et al., 2000: 203, 42a)
b. [swuch fulðe speteð [VP tV tO ut [AdvP in any encre eare]]

In the derivation in (18b), the object trace precedes the particle ut ‘out’. The two derivations in (17b) and (18b) illustrate Biberauer and Roberts’ indecisiveness about the base position of the particle. Since two different underlying positions for particles is clearly undesirable, Biberauer and Roberts could assume that the particle precedes the object in (18b) as well.\(^3\)

This still gives the correct result, whereas base-generating it in a position after the object would not yield examples such as (17a). The drawback of base-generating the particle before the object is that it does not reflect the secondary predicate status of particles.

As it stands, their analysis is unable to account for the particle facts in a principled way.

In the next section, I will show that the interplay between the phrasal status of Old English particles and the grammatical options of Old English put forward by Biberauer and Roberts (2005) account for the Old English SCV facts.

5.3.2 A pied piping analysis of the syntax of Old English SCVs

As the discussion of Old English SCVs in Chapter 4 has shown, there is a range of SCV word orders to account for. Whereas the basic position of particles is preverbal, they often occur postverbally in the surface string as a result of finite verb movement. The effect of verb movement in main clauses (M) as opposed to subordinate clauses (S) is clearly illustrated by the figures in Table 1 (repeated from Chapter 4).

<table>
<thead>
<tr>
<th>O3</th>
<th>Preverbal</th>
<th></th>
<th>Postverbal</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–Vf</td>
<td>prt…Vf</td>
<td>total</td>
<td>Vf–prt</td>
<td>Vf…prt</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>180</td>
<td>28.2</td>
<td>9</td>
<td>1.4</td>
<td>189</td>
</tr>
<tr>
<td>S</td>
<td>375</td>
<td>81.7</td>
<td>10</td>
<td>2.2</td>
<td>385</td>
</tr>
<tr>
<td>Tot.</td>
<td>555</td>
<td>96.7</td>
<td>19</td>
<td>3.3</td>
<td>574</td>
</tr>
</tbody>
</table>

Table 1: The position of the particle with respect to the finite verb in main and subordinate clauses in the O3 period.

\(^3\) The fact that the example in (18a) is from the early Middle English period, whereas the example in (17a) is from the Old English period is irrelevant, because one would expect either Obj–Prt or Prt–Obj in both periods given the uniform head-initial Kaynian analysis Biberauer and Roberts adopt.
As Table 1 shows, there is a clear asymmetry between main and subordinate clauses when it comes to the position of the particle with respect to the finite verb. I will largely restrict the discussion in this section to subordinate clauses, because the subordinate environment is least affected by finite verb movement.

Particles are chiefly found in preverbal position in subordinate clauses, (19a), but preverbal particles are also found in main clauses, (19b).

(19) a. oð þæt heo eft on oðerne ende upastihð.
 until she again on other side up-goes
 ‘until she goes up again on the other side’
 (cotempo, ÆTemp:3.4.87)

 b. & þu Capharnaum, cwyst þu byst þu upahafen of
 and you Capernaum, say you are you up-raised to
 heaven
 ‘and you Capernaum, you say you are raised up to heaven’
 (cowsgosp, Mt [WSCp]:11.23.693)

In both examples in (19), there is no object (though in the passive example (19b), the object þu ‘you’ has become the subject). The SCV upastihð ‘goes up’ in (19a) contains a finite verb, and the SCV upahafen ‘raised up’ in (19b) contains a non-finite verb. The SCV orders in (19) are derived by the movement operations illustrated in (20).

(20) (i) A-to-V-to-v raising:

\[
\begin{array}{c}
P \\
\text{VP} \\
\text{V} \\
\text{v} \\
\text{A} \text{V} \\
\text{V'} \\
\text{tv} \\
\text{PrtP} \\
\text{Prt} \\
\text{up} \\
\end{array}
\]

4 Note that I adopt the same lexical decomposition analysis proposed for Present-Day English in Chapter 3. This means that the lexical decomposition of transitive verbs is thought to consist of a CAUSE operator (in \(A\)), a BECOME operator (in \(V\)) and an abstract adjective \(A\). In the derivations presented in this chapter I will not indicate the operator labels, but they are assumed.
(ii) VP-to-(inner)SpecP movement:

```
      vP
         /\  
       v' /  
      /    
     VP   
    /\   /\  
   tv  Prt v  tvP  
   /\   /\   /\  
  up  V  p  V  
  /\   /\   /\  
 A   V  astihð ahafen
```

The proposed (partial) derivation for Prt–V word orders involves conflation of the lexically decomposed verb, i.e. the abstract adjective, with V and v. The conflation process (comparable to syntactic head-movement; cf. Hale and Keyser 1993, Baker 2003) derives a fully-fledged lexical verb. Observe that the particle is ‘stranded’ when A raises to v (via V), which reflects its syntactically independent status (also marked by the fact that it projects a phrase). The preverbal position of the particle in the surface string is the result of VP movement to the inner SpecP (the outer specifier being reserved for a subject DP). This movement operation is triggered by the EPP-feature bearing v, which probes for a D-element. As argued by Biberauer and Roberts (2005), Old English had two options available to satisfy v’s EPP feature, namely object DP (i.e. the Goal) movement or pied piping of the entire VP (which contains the Goal). Note, however, that there is no object DP involved in the example in (19a), and therefore no D-element, which would leave pied piping of the VP unmotivated. I adopt Biberauer and Roberts’ solution for this apparent problem, which makes use of Hale and Keyser’s (1993, 2002) assumption that “(unergative) intransitives are always associated with a cognate object, which incorporates into the verb” (Biberauer and Roberts 2005: 22, footnote 13). The incorporation supplies the verb with a D-feature and the VP is attracted by v’s EPP feature. The example in (19b) is passive and the subject þu ‘you’ originates as the verb’s object in the VP. The VP (containing the object DP) pied

5 Note that the verbs astihð and ahafen do not appear in capital letters (which are normally used to indicate the lexically decomposed verbs) in the representations in (20). This is because the conflation process, i.e. A-to-V-to-v movement, has taken place and the lexical verb has thus been created. In addition, note that example (19a) is unaccusative, and that I argued in Chapter 3 that unaccusatives lack a sP projection because there is no CAUSE element. I adapt that view slightly here, by assuming that the sP projection is merged when the underlying object moves to the subject position (SpecP). The difference with transitives is that the sP of unaccusatives is defective in the sense that it does not host the CAUSE operator.
pipes to the inner SpecP to satisfy \(v \)'s EPP feature. I will assume that the ‘passive subject’ does not raise to SpecTP but remains in a lower position (note in this respect that the auxiliary \(\text{byst} \), which I assume to be merged in T, precedes the ‘passive subject’ \(\text{þu} \) ‘you’).\(^6\)

Thus, the difference between the derivation of (19a) and (19b) is that the derivation of (19a) but not (19b) involves \(v \)P pied piping to SpecTP (after movement of \(v \) to T).

I propose that Obj–Prt–V orders are derived in the same way as the examples in (19). An example and the proposed derivations are given in (21a) and (21b) respectively.\(^7\)

\[(21)\]

a. \[… þæt he ðone cwelmbæran hlaf \textit{awgebære}, \]

\[… that he the deadly loaf away-carries \]

‘… that he carries away the deadly loaf of bread’

(cocathom2, ÆCHom II, 11:96.146.1988)

b. \[\text{vP } \text{ðone cwelmbæran hlaf V } \text{AP BÆRE } \text{[tP aweg]]} \]

\[\text{MERGE } v \text{ and MOVE BER:AN } \text{►} \]

\[\text{[P bare } \text{vP } \text{ðone cwelmbæran hlaf tv } \text{AP ta } \text{[tP aweg]]} \]

\[\text{MOVE VP to (inner)SpecP } \text{►} \]

\[\text{[P vP } \text{ðone cwelmbæran hlaf tv } \text{AP ta } \text{[tP aweg]] bare tvP} \]

\[\text{MERGE } he \text{►} \]

\[\text{[P he } \text{vP } \text{ðone cwelmbæran hlaf tv } \text{AP ta } \text{[tP aweg]] bare tvP} \]

\[\text{MERGE T and MOVE } v \text{►} \]

\[\text{[P bare [P he } \text{vP } \text{ðone cwelmbæran hlaf tv } \text{AP ta } \text{[tP aweg]] t, tvP}] \]

\[\text{MOVE } vP \text{ to SpecTP } \text{►} \]

\[\text{[TP [TP [vP he } \text{vP } \text{ðone cwelmbæran hlaf tv } \text{AP ta } \text{[tP aweg]] t, tvP] bare tvP]} \]

For examples such as (21a), the VP pied piping option is chosen to satisfy \(v \)'s EPP feature, as illustrated by the derivation in (21b). Likewise, T's EPP feature triggers \(v \)P pied piping, yielding the Obj–Prt–V order. Note that head-movement of A to \(v \) is required to ‘verbalise’ the decomposed verb and takes place for finite as well as non-finite verbs.

In Old English it is also possible for the object DP to follow the Prt–V sequence. This word order pattern is illustrated in (22).

\[(22)\]

And \[þa he ùtdraf þa deofolscoenesse þa spræc se\] and when he out-cast the demoniacal possession then spake the dumb, dumb

‘And when he had cast out the devil, the dumb man spake’

(cowsgosp, Lk [WSCp]:11.14.4570)

\(^6\) Okhado (2005) proposes that the object in passives need not move to subject position but can be assigned nominative case in object position.

\(^7\) The representation of the derivation in (21b) and further examples is adopted from Nilsen (2003). Note that, unlike Biberauer and Roberts (2005), I assume objects are base-generated in SpecVP, following work by (Hale and Keyser 1993) and Chomsky (1995a).
There are 24 clear examples that show the Prt–V–Obj pattern in my database. The Prt–V–Obj order is a minority pattern, but should nevertheless be accounted for. One possibility would be to interpret the preverbal element in these cases as prefixes rather than as particles, in which case the order simply reflects verb (ICV) fronting. However, in 22 out of the 24 examples the preverbal element is an unambiguous particle, because the same particle-verb combination is found elsewhere with the particle separated from the verb. In addition, 22 out of the 24 examples involve prefix doubling and show the prefix v-doubled with a particle (prefix doubling always involves a prefix and a particle; cf. Hiltunen 1983: 98–99). The prefix-verb combination *utdraf* ‘drove out’ in (22) does not display prefix doubling, but the SCV status of *utdraf* ‘drove out’ is evident from other occurrences of the combination in which the prefix *ut* ‘out’ and (a form of) the verb *draf* ‘drove’ occur separated.

The particle status of the prefix in examples showing Prt–V–Obj order raises the question of how the particle but not the object ends up in preverbal position. The postverbal position of the object can be explained through its optional EPP feature. The assumption is that v in these cases is not endowed with an EPP feature, which means that no movement is triggered (neither object DP movement nor VP pied piping), as a result of which the object as well as any other VP material is stranded. How, then, does the particle escape the VP, and why? I propose that Old English had the option of particle incorporation, by which the particle undergoes head-movement and attached to the left of the (lexically decomposed) verb. This is illustrated in (23).

(23)

```
       VP
      /    \
     DP   V'
        /  \  \
       V    AP
          /   \
         A    PrtP
          |      \
         Prt   A
```

Raising of A to V and eventually to v carries along the particle. This operation, then, represents SCV movement rather than movement of the (lexically decomposed) verb alone. Both the object DP and the entire VP stay in situ, because v is not endowed with an EPP feature and therefore does not probe for a D-element. I assume that the particle incorporation possibility was ‘replaced’ by the less costly option of merging the particle with the verb, deriving V–Prt orders.

The next word order patterns I will consider involve one of the Old English verbs *willan, magan, cunnan*, which either precede or follow the SCV (in the order Prt–V). Some examples are given in (24).
(24) a. gif þu sylf wille nyþer astigan to helwarum for manna alyiednysse

‘if you yourself want to go into hell for the redemption of mankind’

(ocathom1, ÆCHom I, 32:453.63.6404)

b. þæt hi ne mihton ða scipu ut bringon.

‘that they not might the ships out lead’

(cochronC, ChronC [Rositzke]:896.10.962)

I analyse the orders in (24) as ‘verb-projection raising’ orders (Biberauer and Roberts 2005: 15 and references cited there) and I follow Biberauer and Roberts (Biberauer and Roberts 2005: 15 and references cited there) in analysing these as involving a structure in which the verbs *willan, magan, cunnon* select an infinitival (TP) complement. The derivation I propose for (24a) is given in (25).

(25)

\[[\text{V}P \text{þu} \text{v} [\text{VP v} [\text{AP ASTIGAN} [\text{V}P \text{þu} \text{tA+V} [\text{AP tA} [\text{PrtP nyþer}]]]]]] \]

MOVE A-to-V-to-\(v\) ►

\[[\text{V}P \text{þu} \text{v} [\text{VP v} [\text{AP ASTIGAN} [\text{V}P \text{þu} \text{tA+V} [\text{AP tA} [\text{PrtP nyþer}]]]]]] \]

MERGE (infinitival) T and MOVE \(v\) ►

\[[\text{VP astigan} [\text{V}P \text{þu} \text{tA+V} [\text{AP tA} [\text{PrtP nyþer}]]]] \]

MOVE \(vP\) to (infinitival) SpecTP ►

\[[\text{VP astigan} [\text{V}P \text{þu} \text{tA+V} [\text{AP tA} [\text{PrtP nyþer}]]]] \]

MERGE \(v\) and MOVE subject DP from infinitival SpecTP to Spec\(v\) ►

\[[\text{VP astigan} [\text{V}P \text{þu} \text{tA+V} [\text{AP tA} [\text{PrtP nyþer}]]]] \]

MERGE (matrix) T and MOVE subject DP to SpecTP ►

\[[\text{VP astigan} [\text{V}P \text{þu} \text{tA+V} [\text{AP tA} [\text{PrtP nyþer}]]]] \]

Following van Kemenade (1993) (cited in Biberauer and Roberts 2005: 15), the Old English verb *wille* ‘want’ is treated as a ‘restructuring’ verb, which selects an infinitival TP complement, whose head T is defective (in the sense of Chomsky 2001). Thus, the derivation in (25) shows how the verb raising trigger \(V_R\), i.e. the restructuring verb *wille* ‘want’ in (24a), selects an infinitival TP complement, from which the subject is extracted to the matrix Spec\(v\)P and then to the matrix SpecTP. Extraction of material out of the infinitival TP complement is possible because it does not constitute a completed phase in Chomsky’s (2001) terms. This is because V in the infinitival clause does not count as a phase head (Biberauer and Roberts 2005: 16). The difference with ‘verb-raising’ cases lies in the way in which the EPP feature of the matrix T is satisfied. Pied piping of \(vP\) to SpecTP
A SYNTACTIC ANALYSIS OF THE OLD ENGLISH SCV

The verb *mihton* 'could' is a verb raising trigger and selects an infinitival TP complement. Matrix T's EPP feature is satisfied by movement of the subject DP to SpecTP.

There are also examples in which *willan, magan, cunnan* do not seem to behave as restructuring verbs. In such examples, these verbs clearly follow the non-finite verb, (27).

(27) a. þonne he up fleon wille to þy þet he þy beorhtor geseon when he up flee want to you that he your splendour see marje, can 'when he wanted to flee up to you so that he can see your splendour'

Watch the video for more details on the syntax of the Old English SCV and the use of *mihton* as a verb raising trigger.

\[
\text{(26) a. } \text{þæt hi ne } \text{mihton } \text{ða } \text{scipu ut } \text{bringon.} \\
\text{that they not could the ships out lead} \\
\text{‘that they were not able to lead out the ships’} \\
\text{(cochronC, ChronC [Rostitzke]:896.10.962)} \\
\text{b. } [\text{P hi r [VP } \text{ða scipu V [Ap BRINGON [vP ut]]]}] \text{ MOV E-to-V-to-V } \text{►} \\
[\text{P hi bringon [VP } \text{ða scipu tA-V tA [vP tA [vP ut]]]}] \text{ MERGE (ininitival) T and MOVE V } \text{►} \\
[\text{P vP hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ MOV E-to-V to (ininitival) SpecTP } \text{►} \\
[\text{P vP hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{MERGE V} \text{►} \\
V_B(mihton) [P [P hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{MERGE P and MOVE subject DP from infinitival SpecTP to SpecP } \text{►} \\
[\text{P hi r V_B(mihton) [P [P tP tA-V tA+[VP tA [vP tA [vP ut]]]}]} \text{ bringon } \text{►} \\
\text{MERGE (matrix) T and MOVE subject DP to SpecTP } \text{►} \\
[\text{P hi T [P tP tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{The verb *mihton* ‘could’ is a verb raising trigger and selects an infinitival TP complement. Matrix T’s EPP feature is satisfied by movement of the subject DP to SpecTP.}
\]

(26) a. þæt hi ne mihton ða scipu ut bringon. that they not could the ships out lead ‘that they were not able to lead out the ships’

\[
\text{(24b), repeated in (26a), also represents ‘verb-projection raising’, as it also involves one of the Old English restructuring verbs, *mihton* ‘could’. The derivation is given in (26b).}
\]

\[
\text{(26) b. } [\text{P hi r [VP } \text{ða scipu V [Ap BRINGON [vP ut]]]}] \text{ MOV E-to-V-to-V } \text{►} \\
[\text{P hi bringon [VP } \text{ða scipu tA-V tA [vP tA [vP ut]]]}] \text{ MERGE (ininitival) T and MOVE V } \text{►} \\
[\text{P vP hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ MOV E-to-V to (ininitival) SpecTP } \text{►} \\
[\text{P vP hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{MERGE V} \text{►} \\
V_B(mihton) [P [P hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{MERGE P and MOVE subject DP from infinitival SpecTP to SpecP } \text{►} \\
[\text{P hi r V_B(mihton) [P [P tP tA-V tA+[VP tA [vP tA [vP ut]]]}]} \text{ bringon } \text{►} \\
\text{MERGE (matrix) T and MOVE subject DP to SpecTP } \text{►} \\
[\text{P hi T [P tP tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{The verb *mihton* ‘could’ is a verb raising trigger and selects an infinitival TP complement. Matrix T’s EPP feature is satisfied by movement of the subject DP to SpecTP.}
\]

\[
\text{The example in (24b), repeated in (26a), also represents ‘verb-projection raising’, as it also involves one of the Old English restructuring verbs, *mihton* ‘could’. The derivation is given in (26b).}
\]

\[
\text{(26) a. } \text{þæt hi ne } \text{mihton } \text{ða } \text{scipu ut } \text{bringon.} \\
\text{that they not could the ships out lead} \\
\text{‘that they were not able to lead out the ships’} \\
\text{(cochronC, ChronC [Rostitzke]:896.10.962)} \\
\text{b. } [\text{P hi r [VP } \text{ða scipu V [Ap BRINGON [vP ut]]]}] \text{ MOV E-to-V-to-V } \text{►} \\
[\text{P hi bringon [VP } \text{ða scipu tA-V tA [vP tA [vP ut]]]}] \text{ MERGE (ininitival) T and MOVE V } \text{►} \\
[\text{P vP hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ MOV E-to-V to (ininitival) SpecTP } \text{►} \\
[\text{P vP hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{MERGE V} \text{►} \\
V_B(mihton) [P [P hi tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{MERGE P and MOVE subject DP from infinitival SpecTP to SpecP } \text{►} \\
[\text{P hi r V_B(mihton) [P [P tP tA-V tA+[VP tA [vP tA [vP ut]]]}]} \text{ bringon } \text{►} \\
\text{MERGE (matrix) T and MOVE subject DP to SpecTP } \text{►} \\
[\text{P hi T [P tP tA-V tA+[VP tA [vP tA [vP ut]]]}] \text{ bringon } \text{►} \\
\text{The verb *mihton* ‘could’ is a verb raising trigger and selects an infinitival TP complement. Matrix T’s EPP feature is satisfied by movement of the subject DP to SpecTP.}
\]

\[
\text{There are also examples in which *willan, magan, cunnan* do not seem to behave as restructuring verbs. In such examples, these verbs clearly follow the non-finite verb, (27).}
\]

\[
\text{(27) a. } \text{þonne he up fleon wille to þy þet he þy beorhtor geseon when he up flee want to you that he your splendour see marje, can} \\
\text{‘when he wanted to flee up to you so that he can see your splendour’} \\
\text{(cocherbar, Lch I [Herb]:31.1.724)} \\
\text{b. and cunnodon mid craeftu hu hi in cunmon mihton.} \\
\text{and know through craft how they in came could} \\
\text{‘and they know through craft how they could come in’} \\
\text{(coaelive, AELS [Edmund]:198.7075)}
\]
Examples such as the ones in (27) cannot be analysed as ‘verb (projection) raising’ cases, because we would expect the ‘restructuring’ verb to precede the non-finite verb. I follow Biberauer and Roberts’ (2005: 19) proposal that verbs such as willan, magan and cunnon are optionally restructuring verbs. In the examples in (27), then, will ‘want’ and mihton ‘could’ do not act as restructuring triggers. Rather than an infinitival TP complement, they select a smaller infinitival vP complement (Biberauer and Roberts 2005: 19, who also cite Wurmbrand 2003). The derivation, using example (27a), is given in (28).

(28) \[\begin{align*}
&[\text{VP} \text{he} \text{VP} \text{FLEON} \text{[VP up]]}] \\
&\hspace{1cm} \text{MOVE A-to-V-to-}v
\end{align*}\]
\[\begin{align*}
&[\text{VP} \text{he} \text{fleon} \text{VP} \text{tA} \text{V} \text{AP} \text{ADRIFÐ} \text{PrtP} \text{aweg} \text{tVP}] \\
&\hspace{1cm} \text{MOVE VP to (inner)SpecP}
\end{align*}\]
\[\begin{align*}
&[\text{VP} \text{he} \text{tA} \text{V} \text{AP} \text{tA} \text{VP} \text{ADRIFÐ} \text{PrtP} \text{aweg} \text{tVP}] \\
&\hspace{1cm} \text{MERGE V}_v
\end{align*}\]
\[\begin{align*}
&\text{Vt(wille)} \ [\text{VP} \text{he} \text{VP} \text{tA} \text{V} \text{AP} \text{tA} \text{VP} \text{ADRIFÐ} \text{PrtP} \text{aweg} \text{tVP}] \\
&\hspace{1cm} \text{MERGE } v \text{ and MOVE } v \text{P to matrix SpecP}
\end{align*}\]
\[\begin{align*}
&[\text{VP} \text{he} \text{VP} \text{tA} \text{V} \text{AP} \text{tA} \text{VP} \text{ADRIFÐ} \text{PrtP} \text{aweg} \text{tVP}] \\
&\hspace{1cm} \text{MERGE (matrix) T and MOVE subject DP to SpecTP}
\end{align*}\]
\[\begin{align*}
&\text{[Vhe T [rhe [VP tA V [AP tA [PrtP aweg]fleon tVP] v Vt(wille) tVP]]]
\end{align*}\]

The derivation shows that the verb will ‘want’ selects an infinitival vP (rather than TP) complement. In the infinitival vP, v’s EPP feature is satisfied by VP pied piping. In the matrix clause, v’s EPP feature is satisfied by pied piping the infinitival vP to the matrix SpecP, and T’s EPP feature is satisfied by movement of the subject DP to SpecTP.

The discussion of the syntax of Old English particles in Chapter 4 shows that particles in preverbal position can be separated from the verb by various elements. These elements include the negative marker ne ‘not’, the infinitive marker to ‘to’, modal verbs and stranded prepositions. I will discuss the derivations of these word order patterns in turn.

The first Prt...V I will discuss involves the negative marker ne ‘not’ interrupting the Prt–V sequence. An example, along with the proposed derivation, are given in (29).

(29) a. gif he mid unþeawum hi aweg ne adrifð, if he with sins them away not drives ‘if he doesn’t drive them away with sins’ (coaelhoh, ÆHom 10:38.1428)

b. \[\begin{align*}
&[\text{VP} \text{hi} \text{VP} \text{ADRIFÐ [VP aweg]]}] \\
&\hspace{1cm} \text{MOVE A-to-V-to-}v
\end{align*}\]
\[\begin{align*}
&[\text{VP} \text{hi} \text{adrifð} \text{VP} \text{tA} \text{V} \text{AP} \text{tA} \text{VP} \text{aweg}] \\
&\hspace{1cm} \text{MOVE VP to (inner)SpecP}
\end{align*}\]
\[\begin{align*}
&[\text{VP} \text{hi} \text{tA} \text{V} \text{AP} \text{tA} \text{VP} \text{adrifð} \text{tVP}] \\
&\hspace{1cm} \text{MERGE Neg}
\end{align*}\]
\[\begin{align*}
&\text{[Neg ne] [VP hi tA V [AP tA [PrtP aweg]] adrifð tVP]]} \\
&\hspace{1cm} \text{MERGE T and MOVE } v \text{ (via Neg)}
\end{align*}\]
A SYNTACTIC ANALYSIS OF THE OLD ENGLISH SCV

In the derivation in (29b), the two pied piping options of Old English grammar are applied. First, the VP moves to SpecP in order to satisfy r's EPP feature. The second pied piping operation, movement of r to SpecTP, is triggered by T's EPP feature.

The Prt...V order is also attested with the infinitival marker to intervening between the preverbal particle and the verb. An example and the proposed derivation are presented in (30).

(30) a. ... & deofolseocnessa ut to adrifanne.

... and demonical possessions out to cast
‘... and to cast out devils’
(cowgosp,Mk [WSCp]:3.15.2351)

b. [TP [vP deofolseocnessa V [AP ADRIFANNE [pP ut]]]]

MOVE A-to-V-to-T ►

[TP [vP deofolseocnessa tA+V [AP tA [pP ut]]]]
MOVE VP to (inner)SpecP ►

[TP [vP deofolseocnessa tA+V [AP tA [pP ut]]]]
MERGE T ►

[TP [vP deofolseocnessa tA+V [AP tA [pP ut]]]]
MOVE rP to SpecTP ►

As the derivation in (30b) shows, the EPP feature of r is satisfied by VP pied piping (the VP contains the object DP which supplies the required D-feature). As for T, its EPP feature triggers the (inner and outer) specifiers of rP to its specifier. I assume an empty subject PRO (in SpecP) supplies the D-feature.

Other attested intervening elements in the Prt...V order are verbs like sculan, willan, magan, cunnan. I analyse these examples as cases of ‘verb-projection raising’ (cf. the examples in (24)). An example (from the O34 period) and the proposed derivation are given in (31).

(31) a. þæt hi hine ut sceoldon wurpan.

that they him out should throw
‘that they should throw him out’
(coeust, LS 8 [Eust]:168.173)
The verb *sceoldon* ‘must’ is a verb raising trigger, selecting an infinitival TP complement. While infinitival *v* does not bear an EPP feature, infinitival T’s EPP feature is satisfied by pied piping. The EPP feature of the matrix *v* is satisfied by pied piping of the (infinitival) VP (which contains the object) and that of the matrix T is satisfied by movement of the subject DP to SpecTP.

Preverbal particles can be separated from the verb by a prepositional phrase, (32a), or by a single preposition, when the object of the preposition has been fronted, (32b).

(32) a. … and *fela* goldhordas *forð* mid him *gelæhte*, … and many golden treasures away with him took ‘… and took away with him many golden treasures’ (coaelive, ÆLS [Maccabees]:6.4838)

b. ealdond .. ðæt we ær *ut* of *gongende* wæron island .. that we before out from going were ‘island .. from which we had previously put out’ (cobede, Bede 5:1.384.23.3834)

In Chapter 4 I argued that prepositional phrases like the ones in (32) should be analysed as modifiers of the particle (rather than the other way around, as suggested by Van Kemenade 1987 and Pintzuk 1991, 1999 for example). They specify the location that the direction (expressed by the particle) is directed from, towards, etc. In *ut* of ‘out of’ examples it is not always evident that a true SCV is involved, because *ut* ‘out’ seems to form a closer unit with the *of*-phrase than with the verb. I treat *ut* ‘out’ and *gongende* ‘going’ as an SCV, because *utgan* ‘go out’ is attested as an SCV elsewhere without a prepositional phrase modifying *ut* ‘out’. The presence of a prepositional phrase in fact confirms the phrasal status of Old English particles: apart from pre-modifiers (adverbs for example) they also allow post-modifiers.
The derivation I propose for examples like the ones in (32) is presented in (33), using example (32a).

(33)
\[[vP fela goldhordas V [AP GEŁEHTE [PP forð [PP mid him]]]]]
\[MOVE a-to-v-to-v \]
\[[AP gelæhte [vP fela goldhordas tA+V [AP tA [PP forð [PP mid him]]]]]
\[MOVE VP to (inner)SpecP \]
\[[vP fela goldhordas tA+V [AP tA [PP forð [PP mid him]]]] gelæhte tVP]

As the derivation in (33) shows, the prepositional phrase ('with him') is part of the projection of the particle (PrtP). The order (Obj–)Prt–PP–V is the result of VP pied piping to SpecP, satisfying v’s EPP feature. The derivation of the example in (32b) involves more steps than the one of (32a), (34).

(34)
\[[vP we V [AP GONGENDE [PP of ealond]]]]]
\[MOVE a-to-v-to-v \]
\[[vP we gongende [vP tA+V [AP tA [PP of ealond]]]]]
\[MOVE VP to (inner)SpecP \]
\[[vP we [vP tA+V [AP tA [PP of ealond]]]] gongende tVP]
\[MERGE T \]
\[[vP wæron [vP we [vP tA+V [AP tA [PP of ealond]]]] gongende tVP]
\[MOVE T to SpecTP \]
\[[vP [vP we [vP tA+V [AP tA [PP of ealond]]]] gongende tVP wæron tP]
\[MOVE ealond \]
\[[XP ealond … [TP [vP we [vP tA+V [AP tA [PP of ealond]]]] gongende tVP wæron tP]]]

The EPP requirements of v and T are fulfilled by pied piping the VP and eP, respectively. The DP in the complement of the preposition moves to the front of the clause, stranding the preposition.

A final example in which the preverbal particle occurs separated from the verb is exemplified by the example in (35).

(35)
Nider be ahreas
down he fell
'Down he fell'
(cocathom1, ÆCHom I, 11:270.111.2078)

In this example, the particle *nider* ‘down’ has been topicalised, as is clear from its pre-subject position. This example not only illustrates the syntactic independence of the particle (it is separated from the verb), it also highlights the phrasal status of the particle. I analyse examples like the one in (35) as involving movement of the PrtP to the topic position of the clause (SpecCP).
The syntactic independence of particles is perhaps most strikingly demonstrated by surface orders in which the particle follows the verb. V(…)Prt patterns are especially frequent in the main clause environment, due to the role of finite verb movement (V2), but are also attested in subordinate contexts. Table 2 contains the figures (repeated from Chapter 4) for the postverbal position of particles in main (M) and subordinate (S) clauses.

<table>
<thead>
<tr>
<th>O3</th>
<th>Finite verb</th>
<th>Non-finite verb</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vf–prt</td>
<td>Vf…prt total</td>
<td>Vnf–prt</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>M</td>
<td>182</td>
<td>40.4</td>
<td>268</td>
</tr>
<tr>
<td>S</td>
<td>44</td>
<td>59.5</td>
<td>30</td>
</tr>
<tr>
<td>Tot.</td>
<td>226</td>
<td>43.1</td>
<td>298</td>
</tr>
</tbody>
</table>

Table 2: Particles in postverbal position in main and subordinate clauses in the O3 period

The figures in the Vf…Prt column of Table 2 suggest that particles are often stranded as a result of verb movement in main clauses, but also in subordinate clauses (cf. Pintzuk 1991, 1999). Finite verb movement could also play a role in the Vf–Prt cases (string vacuous movement), but there is no conclusive evidence for this as there is no intervening (non-VP) material. Particles are also found following a non-finite verb, as the figures in Table 2 show.

Some examples of the V…Prt order are given in (36).

(36)	a. swa þæt se lig abraid	þone loc up feor,
	‘so that the flame drew up the hair far’	
	(coaelive, ÆLS [Martin]:935.6569)	
b.	þæt hig adryfun hig ut	
	‘that they cast them out’	
	(cowsgosp, Mt [WSCp]:10.1.579)	
c.	gif Crist scute þa adun.	
	‘if Christ falls then down’	
	(cocathom1, ÆCHom I, 11:268.76.2052)	

The example in (36a) looks very modern in that the order V–Obj–Prt is one of the two possible word orders of Present-Day English VPCs. The same holds for (36b), in which the object is pronominal and intervenes between the verb and the postverbal particle. These two examples could either reflect finite verb movement or base-generated (VO) order.
There is no conclusive evidence for verb movement, because there is no intervening non-VP material. Disregarding this issue, I propose the following basic derivation of examples like (36a–b).

(37) \[
\text{\[VP [one loc ABRÆD [VP [ABÆT [pup up]]]]]\]
\]
\[\text{MOVE A-to-V-to-}\]
\[\text{\[VP abræd [VP [one loc tA+V [AP tA [PrtP [up]]]]]\]
\]
\[\text{MERGE subject DP in SpecVP}\]
\[\text{\[VP scute [VP abræd [VP [one loc tA+V [AP tA [PrtP [up]]]]]\]
\]
\[\text{MERGE T and move subject DP to SpecTP}\]
\[\text{\[TP se lig [TP [ABÆT abræd [VP [one loc tA+V [AP tA [PrtP [up]]]]]\]
\]
\[\text{MERGE T and move subject DP to SpecTP}\]
\[\text{\[TP aðu [TP [ABÆT abræd [VP [one loc tA+V [AP tA [PrtP [up]]]]]\]
\]
\[\text{MOVE subject DP to SpecTP}\]
\]

The proposed derivation in (37) involves no object DP movement nor VP pied piping to SpecP (\(p\) has an optional EPP feature and is not realised here). Subject DP movement to SpecTP takes place in order to satisfy T's EPP feature. Note that the raising of the decomposed verb A to \(p\) (via V) does not constitute finite verb movement. This movement is a ‘verbalising’ operation through which the fully-fledged verb is derived. Finite verb movement involves further raising of the finite verb to T and C.

In the example in (36c) the intervening adverb \(þa\) ‘then’ provides clear evidence for finite verb movement. The example is repeated in (38a) and its derivation is given in (38b).

(38) a. \[\text{gif Crist scute \(þa\) adun.}\]

 if Crist falls then down

 ‘if Christ then falls down’

 (cochtomh), ÆCHom I, 11:268,76,2052)

 \[\text{\[vp [Crist] V [AP SCUTE [pup adun]]]\]
\]

b. \[\text{\[vp [þa] \(þa\) [vp (Crist) tA+V [AP tA [pup adun]]]\]
\]
\[\text{MOVE A-to-V-to-}\]
\[\text{\[vp scute [þa] \(þa\) [vp (Crist) tA+V [AP tA [pup adun]]]\]
\]
\[\text{MOVE Crist to SpecP}\]
\[\text{\[vp Crist scute [þa] \(þa\) [vp tDP tA+V [AP tA [pup adun]]]\]
\]
\[\text{MERGE T and move \(p\)}\]
\[\text{\[vp scute [þa Crist t] [þa] \(þa\) [vp tDP tA+V [AP tA [pup adun]]]\]
\]
\[\text{MOVE subject DP to SpecTP}\]
\[\text{\[vp Crist scute [þa tDPþa t] [þa] \(þa\) [vp tDP tA+V [AP tA [pup adun]]]\]
\]

As the derivation shows, there is no object DP movement or VP pied piping (\(p\) is not endowed with an EPP feature). T's EPP feature is satisfied by movement of the subject DP to SpecTP. The verb (i.e. the fully-fledged verb \(v\)) undergoes finite verb movement to T (and possibly C). The SCV \(scute\) \(adun\) ‘falls down’ is unaccusative, so that the subject originates as the object.

In the main clause environment, evidence for stranding of the particle by finite verb movement also comes from imperatives. An example is given in (39).
(39)
ahryse þa moldan of.
shakes the dust off
‘Shake off the dust’
(coherbar, Leb I [Herb]: 1.1.7)

The derivation of examples like the one in (39) involves object DP movement to SpecP to satisfy v’s EPP feature and verb movement to T (and possibly C).8

Another word order pattern that is occasionally attested in main clauses is V–Subj–Prt–Obj. I found 8 examples in texts from the O3 period. They are given in (40).

(40) a. … þa dyde he up his hand,
… then did he up his hand
‘… then he put up his hand,’
(coactive, ÆLS [Martin]:382.6206)
b. Teoh ðu forð reinscures gif þu miht.
draw you forth rainscours if you can
‘Draw forth downpours if you can.’
(coactive, ÆCHom II, 7:62.77.1245)
c. Ðær lætt Petrus se apostol forð, þæt iudeisce folc. ðe he
there let Peter the apostle forth that Judaist people who he
ðurh his lare to geleafan gebigde;
through his instruction to belief brought
‘There Peter the apostle let forth the Judaist people who he brought to belief
through his instruction.’
(coactive, ÆCHom II, 43:324.182.7291)
d. God cwæð eac swilce: Læde seo corðe forð cuce nytena
God said also such lead the earth forth living animals
on heora cynne & creopende cyn & deor æfter heora
in their kinds and creeping things and beasts after their
kinds
‘God also said the following: Let the earth bring forth living animals in their
kinds and creeping things and beasts after their kinds.’
(coactive, Gen:1.24.50)
e. Ða dyde heo of hyre wydewan reaf.
then did she off her widow’s garment
‘The she took off her widow’s garment.’
(coactive, Gen:38.14.1504)

8The large XP-movement option, VP pied piping, is also possible for satisfying v’s EPP feature and deriving the correct order, but I will assume that it is dispreferred in this case, because it is a more costly operation than object DP movement.
A SYNTACTIC ANALYSIS OF THE OLD ENGLISH SCV

f. þa wurpon hig ut þærne gewundudne.

"Then they threw out the wounded."

(gowgsosp, Lk [WSCp]:20.12.5281)

g. Ða dydon hig aweg þone stan.

"Then they put away the stone."

(gowgsosp, Jn [WSCp]:11.41.6746)

h. Da Pilatus þas spræce gehyrde þa lædde he ut þone hælend.

"When Pilate heard the conversation, he brought out the Saviour"

(gowgsosp, Jn [WSCp]:19.13.7308)

In 6 out of these 8 examples, the subject is pronominal. In (40c) and (40d), the subject is a full nominal. The object in example (40c) is heavy: it contains a relative clause. Example (40b) is imperative and the mood of the verb in example (40d) is subjunctive. In 5 out of the 8 examples, the clause-initial element is þa ‘then’, in 1 example it is þær ‘there’, (40c), and in two other examples the verb is in clause-initial position, (40b) and (40d). All examples in (40) involve V2: the verb has moved to the second position in the clause (with the exception of the imperative and the subjunctive examples, (40b) and (40d)) and I assume they occupy C (cf. Fischer et al. 2000: 127).

The order Vr–Subj–Prt–Obj displayed in the examples in (40), though infrequent, is interesting because the object follows the particle, which resembles the Present-Day English VPC pattern. How does the analysis proposed here account for this word order pattern? The order Prt–Obj seems to be the main concern, given the assumed element order in the VP (Obj–Prt) and given the available grammatical options (object DP movement, VP pied piping or no movement), which all preserve the element order Obj(…)Prt. I propose that Old English particles, being independent syntactic elements, were able to move out of the VP. Independent evidence for this possibility comes from topicalisation facts, which show that Old English particles could be fronted to clause-initial position. Their syntactically independent (i.e. phrasal) status, as well as the fact that they carry primary stress, allowed them to be displaced, for example to achieve a pragmatic effect (as is the case with topicalisation). In examples showing the Vr–Subj–Prt–Obj order, I assume the particle has moved for focus reasons (presumably into the rP domain). It moves to bring itself into focus, almost taking over the verb’s syntactic primary predicate status. The fact that all the verbs involved in the examples in (40) are light verbs supports this analysis. They are semantically light and the meaning of the secondary predicate, i.e. the particle, provides most of the meaning of the entire complex predicate.

The postverbal particle order in which the particle immediately follows the verb (V–Prt) is of special importance, because this order became very frequent in early Middle English. The pattern is not frequent in Old English, but the attested cases represent the first...
instances of what was to become the single most dominant order from early Middle English onward (see also Chapter 6). Examples of the V–Prt pattern from the OE period are given in (41).

(41) a. for ðan þe se stream berð aweg Placidum;
 because the stream carries away Placidus
 ‘because the stream carries away Placidus’
 (coclathom2, ÆCHom II, 11:95.97.1943)

b. þæt hi sceoldon feallan adune.
 that they should fall down
 ‘that they should fall down’
 (cocathom2, ÆCHom II, 1:9.226.197)

In the example in (41a), the particle aweg ‘away’ follows the verb berð ‘carries’ and the particle is itself followed by an object, Placidum ‘Placidus’. The example in (41b) contains an unaccusative SCV, feallan adune ‘fall down’, whose surface subject hi ‘they’ corresponds to the underlying object. I propose that Old English examples displaying V–Prt–Obj order (cf. (41a)) represent the first cases of a structure that becomes a standard option in later grammars (cf. Chapter 3 and 7). This involves particles (particles) becoming increasingly analysed as a unit with the verb rather than as independent syntactic elements. The underlying principle behind this change is the Structural Economy Principle proposed in Chapter 3 and repeated from (10) in (42).

(42) Structural Economy Principle
 An element does not project, unless it is required to do so by syntactic,
 semantic and/or pragmatic factors.

The Structural Economy Principle, like other economy principles on projection (Speas 1995; Bresnan 2001; van Gelderen 2004 among others), states that superfluous structure should be avoided. This entails that an element is a head unless there is evidence to the contrary. It follows from this economy principle that the default status of particles is X*, and that they project a phrase when there is evidence for phrasal status (e.g. when the particle is modified). As I have shown in Chapter 4, there is robust evidence for the phrasal status of particles in Old English. However, there are examples which suggest that the verb and the particle are analysed as a unit, reflecting dependence of the particle on the verb, (43).
In (43), the imperative verb *gað* ’go’ as well as the particle *ut* ’out’ precede the vocative subject *ge ðreo* ’you three’. Vocative subjects often occur in a position following the verb, and the fact that it also follows the particle in this example indicates that the verb and the particle have moved as a unit, which suggests that the particle is treated as a head. The structure is illustrated in (44).

(44) \[
\begin{array}{c}
A \\
\Rightarrow \\
\text{AP} \\
\Rightarrow \\
\text{V} \\
\end{array}
\]

The structures in (44) represent syntactic complex word formation (cf. Chapter 3), which results from the particle being analysed as a head. As a head, it is not syntactically independent and has to form a unit with the (lexically decomposed) verb.

The derivation I propose for an example like the one in (41a), repeated in (45a), is presented in (45b).

(45) a. *for ðan þe* se stream berð aweg Placidum;
because the stream carries away Placidus
‘because the stream carries away Placidus’

(b) \[
\begin{array}{c}
[\text{vP Placidum V } [\text{VP } \text{berð aweg }]] \\
\end{array}
\]

\[
\begin{array}{c}
\text{MOVE A-to-V-to-} \text{v} \\
\Rightarrow \\
\text{vP } \text{se stream berð aweg } [\text{vP Placidum tv } [\text{tV tv}]] \\
\end{array}
\]

\[
\begin{array}{c}
\text{MOVE subject DP in SpecP } \\
\Rightarrow \\
\text{vP berð aweg } [\text{vP se stream } [\text{vP Placidum tv } [\text{tV tv}]]] \\
\end{array}
\]

\[
\begin{array}{c}
\text{MOVE T and move } r \Rightarrow \\
\Rightarrow \\
\text{vP berð aweg } [\text{vP se stream } [\text{vP Placidum tv } [\text{tV tv}]]] \\
\end{array}
\]

\[
\begin{array}{c}
\text{MOVE subject DP to SpecTP } \\
\Rightarrow \\
\text{vP se stream berð aweg } [\text{vP tDPsubj } [\text{vP Placidum tv } [\text{tV tv}]]] \\
\end{array}
\]

As the derivation shows, the SCV moves to \(r \) as a unit (a complex head formed in syntax), so that the verbal part of the SCV becomes ‘verbalised’. Note that there is no object DP movement nor VP pied piping, implying that \(r \) does not bear an EPP feature. This is in line with what Biberauer and Roberts have to say about the optionality of \(r \)’s EPP feature,
namely that the absence of an EPP feature on \(r \) leaves unmoved material in focus, as is the case with the object DP \(\text{Placidum} \) ‘Placidus’ in (45a).

The example in (41b), repeated below in (46a), contains one of the restructuring verbs discussed above and I therefore analyse it as a case of ‘verb (projection) raising’; (46b).

\[
\text{(46)}\quad a. \quad \text{þæt hi sceoldon feallan adune.}\]

\(\text{that they should fall down} \)

\(\text{(cocathom2, ÆCHom II, 1:9.226.197)} \)

\[
b. \quad \begin{array}{c}
\text{[}r \text{feallan [VP (hi) V [TP FEALLAN [VP adune]]]]} \\
\text{MOVE A-to-V-to-} \\
\text{VP} \end{array}
\]

\[
\begin{array}{c}
\text{[}r \text{feallan [VP (hi) tA+V [VP tA [TP adune]]]]} \\
\text{MERGE (infinitival) T and MOVE} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\begin{array}{c}
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\begin{array}{c}
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\begin{array}{c}
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

\[
\text{[}r \text{feallan [VP tA+V [TP tA+V [VP adune]]]]} \\
\text{MOVE hi to (infinitival) SpecTP} \\
\text{V-to-TP} \\
\text{VP} \end{array}
\]

The verb raising trigger \(\text{sceldon} \) ‘should, must’ selects an infinitival TP complement. Infinitival \(r \) does not bear an EPP feature, hence no object DP movement or VP pied piping is triggered (notice that the SCV is unaccusative, so the subject corresponds to the logical object). The EPP feature of infinitival T is satisfied by subject DP movement. The matrix \(r \)‘s EPP feature is satisfied by the subject DP, which carries the right D-feature because it is the underlying object. It also satisfies the EPP feature of the matrix T by moving to SpecTP (not depicted in (46b). The derivation does not involve complex head formation of the verb and the particle. This is because learners will not have had any evidence for analysing the particle as a head in unaccusative (and other intransitive) cases.

The order V–Prt–Obj is also attested with non-finite verbs. An example is given in (47).

\[
\text{(47)}\quad \text{He let dragan up þæne deadan Harald and hine on fen he let drag up the dead Harold and him into fen sceotan.}
\]

\(\text{thrown} \)

\(\text{‘He had the dead Harold be dragged up and be thrown into the fen.’} \)

\(\text{(cochronC, ChronC [Rositzke]:1040.6.1796)} \)

The pattern Vnf–Prt–Obj is by no means frequent in O3 (I found 30 examples, several of which contain \(\text{het} \) ‘order, command’ or \(\text{uton} \) ‘let us’). Clearly, given the non-finiteness of the verb, no verb movement can be involved in examples like the one in (47). The particle is
analysed as a head and forms a complex head with the verb. The SCV ‘verbalises’ by moving to v and the object DP stays in situ.

The head analysis of particles, though more economical, is peripheral in Old English due to the robust evidence for phrasal status. It gains momentum in early Middle English, when the evidence for phrasal status decreases (cf. Chapter 6 and 7).

Competition between grammars or variation in a single grammar?

As discussed above, the optionality of pied piping is central to Biberauer and Roberts’ (2005) account of the attested word order variation and changes in Old and Middle English. Importantly, they claim that this optionality results from “a single, fixed set of parametric choices” (Biberauer and Roberts 2005: 10; their emphasis), in other words reflects variation in a single grammar. This goes against the competing grammars approach, originally proposed by Kroch (1989, 1994). In that approach, competition between two grammatical options is claimed to reflect “competition between entire grammatical subsystems” (Kroch 1989: 200). In particular, the headedness of the VP (i.e. head-initial versus head-final) and the position of INFL (INFL-final vs. INFL-medial; cf. Pintzuk 1991, 1999) are thought to reflect competition between grammars.

As Biberauer and Roberts (2005: 10), rightly in my opinion, point out, the putative (Kroch, p.c. with Biberauer and Roberts) advantage of a competing grammars approach that the postulated grammars can be simple no longer holds ground in a ‘Kaynian’ account of word-order variation. Since specifier-head-complement is thought to be the universal underlying order in the ‘Kaynian’ approach, such an analysis need not postulate a directionality parameter. It therefore does not face the complexity that a pre-Kaynian analysis would face in trying to handle head-initial and head-final orders in one grammar. In Biberauer and Roberts’ Kaynian analysis there is no need for postulating changes in parameters in order to account for the attested word order variation and change. Instead, the (changes in) word order patterns are said to follow from a restricted set of grammatical options, all within a single (head-initial) grammar. Following Biberauer and Roberts (2005), I assume that the attested word order variation and change reflects variation in a single grammar.

5.4 Conclusions

In this chapter, I proposed a formal analysis of Old English SCVs as found in the O3 period. The detailed discussion of their behaviour in Chapter 4 led me to adopt the proposal that Old English particles are independent syntactic elements functioning as secondary predicates (cf. Fischer et al. 2000; van Kemenade and Los 2003). Their syntactic autonomy is structurally represented as projection: Old English particles are phrases. This does not undermine the Structural Economy Principle, which favours heads over phrases, because there was shown to be robust evidence for the phrasal status of Old English particles.
The independent status of Old English particles is clearly reflected in their syntactic distribution. Old English particles often occur in a position separated from the verb, preverbally as well as postverbally. The lexical decomposition analysis proposed in this chapter accounts for the separability facts in a principled way. The particle projects a phrase and functions as a secondary predicate, predicating over an object. The particle and the verb are independent syntactic elements and particles are ‘stranded’ when the lexically decomposed verb conflates to obtain its verbal properties.

The various attested word order patterns involving SCVs are accounted for by adopting Biberauer and Roberts' (2005) approach to word order variation and change in Old and Middle English. In this approach, which does not contain an analysis of Old English SCVs (nor of Middle English VPCs), Old English is said to be a spec-pied-piping language, which means that it has several movement options available to it for the satisfaction of EPP features. The variety of word orders found in Old English follows from a restricted set of grammatical options, DP-movement and large XP-movement. I have shown that the Old English SCV facts reflect an interplay between the structural status of SCVs and the grammatical options of Old English (pied piping versus non-pied piping; Biberauer and Roberts 2005).

I proposed that instances of V–Prt–Obj reflect an analysis of particles as heads rather than phrases, which is more economical as postulated in the Structural Economy Principle. These are the first instances of what is to become the predominant pattern from early Middle English onwards.
Part III The growth and development of the verb-particle combination
Introduction

English particles shifted from preverbal to postverbal position in the transition from Old to Middle English (roughly 1100–1500). This shift happened in a relatively short period of time and is usually linked to the loss of OV orders. While the role of the change in the headedness of the VP on the position of the particle is undisputed, not much else has been said about the remarkable positional shift of particles. In this part of the thesis, I study the transitional particle syntax and investigate the role of the language contact situation with Old Norse on the shift to postverbal particles. I also propose a formal syntactic analysis of the transition to postverbal particles and of the Verb-Particle Combination (VPCs) in Middle English. The study shows how the particle system started to develop towards the system of VPCs as we know it today.

Chapter 6 presents a detailed study of early Middle English particles and VPCs and discusses the following problems:

- The shift to postverbal particles
 - An investigation of the position of the particle with respect to finite and non-finite verbs.
 - An investigation of the influence of the language contact situation with Old Norse on the shift to postverbal particles.
- The structural status of early Middle English particles: are they still phrases? I will argue that they undergo grammaticalisation to more frequent head status.
- To what extent is there evidence for particle stranding by finite verb-movement in early Middle English?

Chapter 7 extends the formal syntactic analysis proposed for Old English Separable Complex Verbs (SCVs) in Chapter 5 to early Middle English VPCs. The shift in particle position follows from the structural status of particles as well as from changes in grammatical checking options.
6 Transitional particle syntax: the rise of the postverbal particle

The transition between the Old English and the Middle English period is the stage for some defining changes in the particle system. Firstly, prefixes have decreased in number. Secondly, there is a sharp shift in the position of particles. From early Middle English onward, particles no longer occur predominantly in preverbal position, but instead appear in postverbal position in the majority of the cases in all clausal contexts. These changes embody the decline of the Old English Inseparable Complex Verbs (ICVs) and the development of the Old English Separable Complex Verbs (SCVs) into the Verb-Particle Combination (VPC).

In this chapter, I discuss and analyse these changes in detail against the background of other syntactic changes going on in the same period. I investigate the distribution of early Middle English particles, presenting results from a corpus study based on data collected from the Penn-Helsinki Parsed Corpus of Middle English (PPCME2; Kroch and Taylor 2000b), using CorpusSearch (Randall 2003). The chapter is organised as follows: §6.1 discusses the decline of the prefixes. In §6.2, I discuss developments in the meaning and structural status of particles (§6.2.1 and §6.2.2). I also investigate the rise of the postverbal particles after the transition to Middle English, against the background of developments in the syntax of Middle English, especially the loss of OV word orders and the role of finite verb movement (§6.2.3). In §6.3, I provide a detailed discussion of the position of the particle in the Middle English period (§6.3.1). I also present the results of a corpus study into differences in particle position between texts from the North-Eastern and South-Western dialects. §6.4 contains the conclusions of this chapter.

6.1 The decline of the prefixes

Besides the shift in particle position, the early Middle English period witnessed another important development. The system of prefixes had already undergone considerable weakening during the Old English period, as evidenced by the lack of stress as well as the lack of semantic content (signalled by doublings with a particle) (cf. Hiltunen 1983). At the beginning of the Middle English period, the number of prefixes had been reduced considerably. The decline of the prefixes involved a semantic and functional weakening and can, according to Hiltunen (1983: 100), “be attributed to an interaction between their multiple meanings and the availability of alternative expressions”. Hiltunen suggests that the development of new meanings led to a growth of the “functional load” (Hiltunen 1983: 97) of the prefixes, which increasingly came to be replaced by the phrasal particles, which had considerable functional overlap with the prefix system (cf. also van Kemenade and Los 2003). Hiltunen (1983: 101) further points out that the decline of the prefix system ties in with the general tendency of the language towards more analytical constructions and with the overall development involving the loss of OV word orders (including the shift in the position of particles).
The prefixes listed in Chapter 4, §4.2.2.1, still occur in early Middle English, but were much less frequent than in Old English (cf. Hiltunen 1983: 92). The group of prefixes includes \(a-, \) \(be-, \) \(for-, \) \(ge-, \) \(of-, \) \(to-, \) \(on-, \) \(þurh-, \) \(ymb- \). Some examples of Middle English prefixes are given in (1).

(1) a. for heo is up alhafen ofer ænglene werod, because she is up raised over angels host 'because she is raised up by a host of angels' (emkentho, 138.133)

b. … þet man scolde be-niman ealla þa minetere þe waron on … that man should from-take all the minters who were in Englande: heora liman England their limbs 'that man should take the limbs of all the minters who were in England' (cmpeterb,46.148)

c. beo wurðe in3ong to habben oðer heon bi-steken þrute be worthy entry to have or be out-shut outside 'be worthy to gain entry or to be shut outside' (cmsawles,168.33)

d. for se þet sterft inne diadliche senne so forliest þe because he who dies in mortal sin so loses the compainie of gode company of God 'because he who dies in mortal sin is deprived of God's company' (emkenise,219.121)

e. Ðanne ech of þe ilke zeuen him to-delp ine ucle halues then each of the same seven him in pieces-deal in many parts 'Then each of the same seven men divided him into many parts' (cmavenbi,16.220)

f. & feole dwild wearen gescogen & geheard and many errors were seen and heard 'and many errors were seen and heard' (cmpeterb,42.11)

At the beginning of the Middle English period, the prefix \(a-, \) (1a), has almost completely disappeared. It has survived in the verb \(to\ arise\), which is restricted to literary usage in Present-Day English. The prefix \(a-\) thus appears in later Middle English texts in the VPC \(arisen \) up 'to raise/arise up'. The examples in (2) are from \(The Brut or the Chronicles of England\), a text written in the M3 period, around 1400.
The prefix *be-*, (1b), often appears as *be-* in Middle English, (1c). This prefix has in fact been preserved into Present-Day English. In some verbs, such as *to begin, to become*, it is no longer recognised as a separate morpheme. It may, however, still be used productively in some of its senses (OED Online entry *be*-prefix).¹ The three most important senses (OED) of the prefix *be-* which can be used to form verbs and adjectives in Present-Day English are listed in (3); the numbers represent the relevant OED entries.

(3)

2. Forming intensive verbs, with sense of 'thoroughly (extension of 1), soundly, much, conspicuously, to excess, ridiculously'. (Some of these occur only in the past participle.)
 - *bespend* 'to spend, waste', *bewound* 'to wound seriously'

6. Forming trans. verbs on substantives used in an instrumental relation; the primary idea being
 a. To surround, cover, or bedaub with, as in *becloud*, to put clouds about, cover with clouds, *bedew*;
 b. To affect with in any way, as in *benight*, *beguile*, *befriend*;

7. Forming participial adjectives, which unite the preceding senses, esp. 6 and 2, in the notion of 'covered or furnished with', usually in a conspicuous, ostentatious, unnecessary, or overdone way. (…) This is now the most frequent use of *be*, and the formations of this kind are endless; e.g. *be-aureoled, bebelted, becoroneted, becupolaed, bediamonded, bedragoned, befathered, beflogg'd, bejacketed, bejeaned, bemotored, bemuslined, beperiwigged, beribboned, beringleted, beskirted, besleeved, betabbed, betrousered, beturbaned, beuncled, bevillaed, bewinged*.

The meaning of the prefix *for-* varied from more literal meanings such as 'away' or 'asunder, apart' to more abstract (bleached) meanings, in which case *for-* merely has intensive force,

meaning ‘completely’. The latter meaning is illustrated by forliest ‘loses’ in example (1d). The prefix for- can still be found in some Present-Day English verbs, such as to forbid, to forfeit, but it is no longer productively recognised as a separate morpheme.

The prefix to- is unstressed (like all other prefixes) and must be distinguished from the particle to, which carries primary stress (like all other particles). Although the prefix to- and the particle to both derive from prepositions, their etymology is different. The prefix to- shares its etymology with Dutch te- (obsolete), German zer- and Gothic dis/twis, meaning ‘two ways, in two’ (Los 2005: 11). The particle to shares its etymology with Dutch ter-, German zer- and the Gothic preposition du ‘to, towards’. The meaning of the prefix to- is ‘in/to pieces, to bits, away, to ruin, to destruction, mis-’ (Los 2005: 12), cf. (1c), a meaning that the prefix for- could also express. The particle to had a meaning of indicating motion, direction. An example is Old English tugangan ‘to go away’, as in (4).

(4) & gongan ða yldestan to
and went the chiefs away
‘and the kings went away’
(coostest, Josh:10.22.5468)

There are few examples of SCVs with the particle to. Clark Hall (1960) mentions toweðan ‘to forbid, interdict, prohibit’, tobringan ‘to bring to’, tocuman ‘to come, arrive’ and lists several other SCVs with the particle to. The clearest cases of to- as a particle are those in which to- is separated from the verb by the negative marker ne or by the participle marker ge- or when it is separated from the verb by verb movement, as in (4).

The prefix ge- has become restricted to being used as a participle marker in Middle English and is weakened to y/i- before disappearing from the English language altogether. In Middle English, y/i- shows up quite frequently as a participle marker. Examples containing an y/i- marked participle as part of a VPC are given in (5).

(5) a. his heaued is ihacked of
his head is cleaved off
‘his head is cleaved off’
(cmancriv, II.220.3194)

b. and his tonge i-kut of.
and his tongue cut off
‘and his tongue (was) cut off’
(cnpolych, VI.285.2093)

According to the OED (entry for y- prefix), the prefix y- first disappeared from Northern Middle English dialects and “its disappearance in the North was assisted by the absence of the prefix in ON [Old Norse; M.E.]”. Whether or not the loss of y- was influenced by Old

2 ‘Bleaching’ is a term first used by Gabelenz (1891) and denotes a shift in meaning, often a shift to more abstract meanings.
Norse, fact is that the prefix persisted longer in the Southern dialects than in the Northern dialects.

In two other Germanic languages, German and Dutch, there seems to have been less decline in the prefix system. Thus, in Modern Dutch (ModD) and Modern German (ModG) we find cognates of many of the lost English prefixes just discussed: ModD has bevragen 'to question', and so does ModG bevragen 'to bury'. ModG verdwijnen 'to disappear', is the cognate of Old English for. The same prefix is found in ModG: ver-,

In two other Germanic languages, German and Dutch, there seems to have been less decline in the prefix system. Thus, in Modern Dutch (ModD) and Modern German (ModG) we find cognates of many of the lost English prefixes just discussed: ModD has bevragen 'to question', and so does ModG bevragen 'to bury'. ModG verdwijnen 'to disappear', is the cognate of Old English for. The same prefix is found in ModG: ver-,

In two other Germanic languages, German and Dutch, there seems to have been less decline in the prefix system. Thus, in Modern Dutch (ModD) and Modern German (ModG) we find cognates of many of the lost English prefixes just discussed: ModD has bevragen 'to question', and so does ModG bevragen 'to bury'. ModG verdwijnen 'to disappear', is the cognate of Old English for. The same prefix is found in ModG: ver-,

In two other Germanic languages, German and Dutch, there seems to have been less decline in the prefix system. Thus, in Modern Dutch (ModD) and Modern German (ModG) we find cognates of many of the lost English prefixes just discussed: ModD has bevragen 'to question', and so does ModG bevragen 'to bury'. ModG verdwijnen 'to disappear', is the cognate of Old English for. The same prefix is found in ModG: ver-

Hiltunen (1983: 94) observes that the overall weakening of the prefixes went hand in hand with the loss of lexical content. Because of their weakened meaning, prefixes were no longer able to express locative, aspectual (e.g. perfective) and intensifying meanings and were therefore replaced by other (analytic) expressions. He mentions the possible influence of Old Norse and French on the decline of the prefix system, but notes that the development had already begun before these languages influenced the English language.

On top of the factors isolated by Hiltunen (1983), the functional overlap of prefixes and particles must have played a significant role. In Old English, both prefixes and particles function as resultative predicates, denoting the endpoint or –state of the activity expressed by the verb (cf. the R-LCS discussion in Chapter 4). The overall weakening of the prefixes caused them to lose their function, which was taken over by the particles, which had undergone no such weakening.

6.2 The rise of the verb-particle combination

At the beginning of the Middle English period (c. 1100-1500), the English particle system has undergone some major changes. The Old English prefix system is in sharp decline (cf. §6.1) and particles now occur predominantly in postverbal position. Moreover, non-transparent meanings are attested for the first time. I will discuss the changes in the meaning of particles in §6.2.1. In §6.2.2, I will investigate the structural status of Middle English particles. In §6.2.3, I will discuss the rise of postverbal particles in Middle English against the background of the overall syntax of this period, including some major changes that take place in this period.

6.2.1 Changes in the meaning of particles in the early Middle English period

The Old English particles predominantly have a transparent meaning, expressing a direction. In Middle English, the meaning of particles is often still transparent, but non-transparent meanings start to appear in the early Middle English period.
Hiltunen (1983: 148–149) makes a distinction between literal, metaphorical and idiomatic meanings. The literal meaning is the basic meaning and expresses a direction. The metaphorical meanings are what Hiltunen (1983: 148) calls “transferred meanings”, in which “the content is somehow removed from the literal denotation, but where the literal meaning is still transparent (e.g. the sea rose up)”. He notes that SCVs with such a metaphorical meaning already existed in Old English, although literal meanings predominate in that period (Hiltunen 1983: 149). My classification is slightly different from Hiltunen’s in that I consider the examples Hiltunen subsumes under the metaphorical type as examples with a non-transparent meaning. However, in the example the sea rose up, presented by Hiltunen as a metaphorical case, the particle has a completely transparent meaning in my view: it denotes a direction. Only when the basic (i.e. transparent) meaning of the particle cannot be inferred from the SCV or VPC do I consider the particle to have a non-transparent meaning, which is in fact Hiltunen’s idiomatic type. Hiltunen (1983: 148) reserves the term idiomatic “for combinations where the meaning may no longer be inferred on the basis of the literal meanings of the constituents”.

Hiltunen (1983: 149) observes an increase in VPCs with a metaphorical meaning in the early Middle English period, and provides the following examples (from Hiltunen 1983: 148–149; glosses and bold face are mine).3

(6) a. þeonne cumeð upp adeuociun
 then came up devotion
 ‘then devotion came up’
 (Ancr 129.7)

b. Do awei þe þohtes, þat prokien þin heorte
 do away the thoughts, that stimulate your heart
 þurh licomliche lustes
 through bodily lusts
 ‘Do away the thoughts that stimulate your heart with bodily lusts’
 (HMaid 11.108)

c. auh hwon hit alles cumeð forð, þeonne is hit geoluh atter
 but when it all comes forth, then it is yellow poison
 ‘but when it all comes forth, then it is yellow poison’
 (Ancr 38.10)

d. Breke downe firste pride in bodely berynge
 break down first pride in bodily behaviour
 ‘First break down pride in bodily behaviour’
 (Rolle(P) 22.29)

e. þus he talede wel wið twa hundret cnihtes, & wið ma
get, þ þu_geuen anan up hare geomere bileaue, wurpen alle
still, who give soon up their miserable faith, threw all
awei hare witlese lei, wenden to Criste
away their foolish laws went to Christ
‘thus he spoke well with two hundred knights, and yet with more
knights who soon give up their miserable faith and all dispensed with their foolish
laws and joined Christ’

(St.Kath 88.22)

The example in (6a), from the Ancrene Riwle (West Midlands, first half of the thirteenth
century), contains the VPC _cumeð upp_ , from _cumen up(p)_ ‘to rise, happen’. The particle _upp_ ‘up’
does not convey a direction, but has a non-transparent meaning (Hiltunen: metaphorical).
Notice that an abstract sense of direction may still be discerned. As we will see later on in
this section and as Chapter 1 about Present-Day English has shown, _up_ developed quite a
few non-transparent meanings after the Old English period.

The VPC _do awei_ ‘to do away’ in (6b), from Hali Meiðhad (West Midlands, first half of the
thirteenth century), is treated by Hiltunen as an example with metaphorical meaning. This
has to do with the fact that the object involved, i.e. _þohtes_ ‘thoughts’, is abstract (Hiltunen
1983: 149). The VPC itself conveys a transparent meaning in my opinion, since the meaning
of the entire VPC can be inferred from that of its constituent parts: the verb _do_ denotes an
action and the particle _awei_ ‘away’ expresses a direction. As Hiltunen (1983: 149) points out,
transparency is a matter of degree, and the VPC in example (6b) is a good illustration of
this.

The example in (6c), _cumeð forð_ ‘to come up’, from the Ancrene Riwle, is not discussed
separately by Hiltunen, but the contrast with an Old English example containing the related
SCV indicates that the meaning of the Middle English VPC is transferred, as Hiltunen
(1983: 149) puts it. The Old English example is given in (7), taken from Hiltunen (1983:
148); glosses and bold face are mine.4

(7) _Cuman_ nu myccle hundas _forð_ 7 hine abitan
come now many dogs forth and them devoured
beforan þyssum casere
before this emperor
‘Now many dogs come forth and devoured them before the emperor’

(BiHom 181.19)

In (7), the SCV _forðcuman_ ‘to come forth’ has a transparent meaning, in contrast to the VPC
cumeð forð ‘to come up’ in (6c). The particle _forð_ ‘forth’ in (7) conveys a directional, i.e.

4 BiHom = The Blickling Homilies.
transparent (Hiltunen: literal), meaning, while the meaning of the particle forð 'forth' in (6c) is more abstract and therefore non-transparent (Hiltunen: metaphorical, transferred).

Example (6d) is from the English Prose Treatises of Richard Rolle de Hampole, which is written in the Northern dialect and dates from the second half of the fourteenth century. Hiltunen has included this late Middle English text because there is very little early Middle English prose material available from the Northern dialect (Hiltunen 1983: 37). Given the date of the text, it is not surprising that it contains examples of VPCs with a non-transparent meaning. In (6d), break down ‘to break down’ has the meaning of ‘to stop, dispense with’. As in (6a), which has an abstract subject and (6b), which has an abstract object, the example in (6d) contains an abstract object. For Hiltunen, this is a criterion for the metaphorical status of VPCs.

The meaning of the VPC geuen up ‘to give up’ in (6e) is clearly non-transparent (Hiltunen: metaphorical). Its meaning cannot be inferred on the basis of the literal meaning of the verb geuen, ‘to provide, offer’, and that of the particle up, ‘upwards’. Together, the verb and the particle have developed a new meaning, namely ‘to yield, stop having’. In an article on the English particle up, Denison (1985) presents six examples from the Peterborough Chronicle containing up (as part of the VPC give up). The examples are also included in my own database and are presented in (8).

(8) a. for he besæt heom til hi aiauen up here because he surrounded them until they gave up their castles, towns 'because he surrounded them until they gave up their towns' (competerb, 59,990)
b. & dide ælle in prisun til he iafen up here castles, and did all in prison until they gave up their towns 'and put everyone in prison until they gave up their towns' (competerb, 55,420)
c. Sume he iaf up, some he gave up 'Some he gave up' (competerb, 58,572)
d. þat he alle his castles sculde iiuen up, that he all his towns should give up 'that he should give up all his towns' (competerb, 58,571)
e. & sæde heom ðat he uuolde iiuen heom up Winchester and told them that he wanted them to give up Winchester 'and told them that he wanted them to give up Winchester' (competerb, 58,551)
According to Denison (1985: 44), these examples, all from the last few entries of the Peterborough Chronicle, represent “the first unequivocal examples of completive up”. Denison (1985: 44) points out later examples too, which indicates that the Chronicle examples are the earliest cases of a usage well-attested later. In fact, this development shows some early signs of the Present-Day English VPCs, which often, but not always, have non-transparent meanings.

6.2.2 The structural status of Middle English particles

In Chapter 4, I showed that Old English particles are syntactic phrases and function as secondary predicates. In this section I will investigate to what extent this phrasal nature and secondary predicate function still holds for Middle English particles, using the same criteria as for Old English.

One criterion for phrasal status met by Middle English particles is separability. The examples in (9) illustrate this.

(9) a. Ach a nele pricunge warpeð alþe wint ut
 ‘but a needle’s sting casts out all the wind’
 (cmancriw, II.207.2975)

b. & duste him dun riht to þer eorðe
 ‘and threw him right down to the ground’
 (cmkentho, 145.290)

c. On hwylcen heowe steah he up?
 ‘towards which heaven rose he up’
 (cmkentho, 145.290)

Like Old English particles, Middle English particles can be separated from their verb, and this is still one of the striking characteristics of VPCs in Present-Day English. As we will see later on, a larger number as well as more types of intervening elements were possible in Middle English than in Present-Day English, where only objects and adverbs are allowed to intervene between the verb and the particle (not counting cases in which the particle has been topicalised).
A second criterion, which in fact can be grouped under the first criterion, separability, is modification. In all stages of English since Old English, particles allow modification, which separates them from the verb (cf. Chapter 1 on Present-Day English and Chapter 4 on Old English). A Middle English example is presented in (10).

(10) þæt eadie meiden abe heorte behe up towart
that blessed maiden lifted her heart high up towards
heaven
‘that blessed maiden lifted her heart hight up to heaven’
(cmorma, 62.111)

In the example in (10), the particle up is modified by the adjective behe ‘high’. Just as intervening elements, modifiers of particles have become restricted to a certain type in Present-Day English, where particles can only be modified by certain degree modifiers, such as right, straight.

A third criterion for phrasal status is topicalisation, by which a constituent is fronted to initial position. This criterion too can be grouped under the first criterion of separability, since topicalisation separates the particle from the verb. I found only one example from the M1 period containing a fronted particle, (11).

(11) Forr þeþenn ut we comenn.
because thence out we come
‘because we come out from there’
(cmorm, I,259.2099)

The example is from the Ormulum, written in iambic verse. The fronted position of the particle may have been influenced by the iambic metre of the text, as the stress pattern indicates: Forr þeþenn ut we comenn. As for the type of fronting involved, note that the particle ut ‘out’ in (11) precedes the verb as well as the subject. The fact that it precedes the subject could indicate that it has been topicalised. However, since the verb comenn ‘come’ is unaccusative, the fronted particle could also be analysed in terms of stylistic fronting. The main condition on stylistic fronting is that the clause in which it occurs has an empty subject (cf. Biberauer and Roberts 2005: 25 and references cited there). This condition is apparently met by the unaccusative example in (11), where the subject ut ‘we’ represents the verb’s underlying object. On the other hand, the fact that ut ‘we’ precedes the verb comenn ‘come’ suggests that it occupies the subject position (rather than its underlying object position), leaving no subject gap and therefore preventing stylistic fronting from applying. I will therefore treat the example in (11) as involving topicalisation of the particle.

Particle topicalisation is not attested in M2 texts. There are 4 examples, all main clauses, involving a sentence-initial particle in Chaucer’s Tale of Melibee, an M3 text. They are given in (12).
(12) a. **Uproos** tho oon of thisse olde wise,
 up rose then one of these old wise
 ‘Then one of these old wise men arose’
 (cmctmeli, 219.C1.84)

b. **Up stirten** thanne the yonge folk atones,
 up started then the young people simultaneously
 ‘Then the young people simultaneously’
 (cmctmeli, 219.C1.80)

c. **Uproos** thanne an advocat that was wys,
 up rose then a lawyer who was wise
 ‘Then a lawyer who was wise arose’
 (cmctmeli, 218.C2.66)

d. A surgien, by licence and assent of swiche as weren wise, **up roos**
 a surgeon by licence and assent of such as were wise, up rose
 ‘A surgeon arose by licence and assent of those who were wise’
 (cmctmeli, 218.C2.58)

At first blush, it looks as if the particle has been topicalised, but we cannot be certain
because there are no intervening elements between the particle and the verb.

A search for topicalised particles in M4 te xts (using CorpusSearch; Randall 2003) reveals
3 instances. They are presented in (13).

(13) a. and **in** they entyrd, he and sir Kay.
 and in they entered, he and sir Kay
 ‘and he and sir Kay entered’
 (emmalory, 198.3051)

b. that **downe** he felle in a sowgh in the grounde.
 that down he fell in a swoon to the ground
 ‘that he fell down to the ground in a swoon’
 (emmalory, 206.3390)

c. and **up** they gate on their horsys
 and up they climbed on their horses
 ‘and they mounted their horses’
 (emmalory, 652.4357)

In these examples, the subject intervenes between the fronted particle and the verb,
indicating that the particle has been topicalised.

Another ‘separability’ criterion is coordination. As in Old English, Middle English
particles can be coordinated, as illustrated by the examples in (14)–(16).
The example in (14a) involves particle coordination in which the same particle, *þurh* 'through', is repeated. In (14b), the particle *in* is coordinated with its contrastive counterpart *ut* 'out'. The example in (15) contains three coordinated particles, *up* 'up', *dun* 'down', and *abuten* 'about/(a)round'. The meaning of the particle *abuten* is 'in all parts' and corresponds to the Present-Day English use of the particle *(a)round* in VPCs like *cast around/about*. Note that the particle *abuten* 'about/(a)round' is modified by the adverb *al* 'all', indicating the syntactic independence of the particle. Both examples in (16) contain particle coordination involving the contrastive particles *up* and *down*. All examples in (14)–(16) show that Middle English particles are still syntactically independent elements.

Beside examples of coordinated bare particles, there are attestations of other coordination patterns involving particles in Middle English as well. Consider the examples in (17) and (18).
(17) *Coordinated simplex verb and VPC*

a. & he was *flemd* & *drifenn ut* All affterr hise and he was put to flight and driven out all after his judgement

 ‘and he was put to flight and driven out all after his judgement’

 (cmorm, I, 286.2366)

b. and was sone after *i-putte out and i-slawe.*

 and was soon after put out and slain

 ‘and was expelled and slain soon afterwards’

 (empolych, VI, 279.2039)

(18) *Coordinated VPCs*

a. þæt *flið up & cumeð in* biforen almichtin god.

 that flies up and comes in before almighty God

 ‘that flies up and comes in before the almighty God’

 (emaneriw, II.181.2550)

b. þe cwelleres leiden se luøerliche on hire lich þt tet blod

 the killers laid so vilely on her body that the blood

 bearst ut & strac a-dun of hire bodi as streem dcð of

 burst out and flew down of her body as stream does of

 welle.

 ‘The killers beat her body so vilely that the blood burst out and flew down from her body like a stream does from a spring’

 (cmmarga, 62.121)

c. Ich sei3e þe wicked up-he3ed and vp-lifted as þe cedros of

 I see the wicked up-raised and up-lifted as the cedars of

 Lebanon

 ‘I see the wicked man exalted and elevated like the cedars of Lebanon’

 (cmearlps, 45.1917)

The examples in (17) contain a VPC which is coordinated with a simplex verb. Example (17a) is from an M1 text, the example in (17b) is from an M3 text. These examples indicate that the verb and the particle are seen as a unit, maybe even as a word, given that it is coordinated with a simplex verb. Further evidence for this comes from examples like the ones in (18), in which two VPCs are coordinated.

The findings for coordination are presented in Table 1.⁵

⁵ In Table 1, the ampersand (&) refers to both and or; ‘…’ stands for any element other than the object (adverbs for example).
Table 1: Particles and coordination in the Middle English period

I have subdivided the attested particle coordination patterns in five types, I–V. In the type I pattern, a verb is coordinated with a VPC. In some cases the verb seems to combine (semantically speaking) with the particle of the VPC, but in other cases, the verb is clearly a simplex verb (Vsimplex). An example of the first case (V combines with particle) is presented in (19a), an example of the latter case (V is simplex) is given in (19b).

<table>
<thead>
<tr>
<th>Type</th>
<th>Coordination pattern</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. V & V Prt</td>
<td>V & V Prt</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vsimplex & V Prt & Vsimplex & Vsimplex obj</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>V & V Prt obj</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vsimplex & V Prt obj</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V Prt & Vsimplex</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>II. V & V X Prt</td>
<td>V & V obj Prt</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V & V…Prt</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vsimplex & V…Prt</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. V Prt & V Prt</td>
<td>V Prt & V Prt</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prt V & Prt V</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IV. V Prt & Prt</td>
<td>V Prt & Prt</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V Prt & Prt obj</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. V X Prt & Prt</td>
<td>V obj Prt & Prt</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V…Prt & Prt</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Because it is often difficult to determine whether the ‘first’ verb combines with the particle, I have made the distinction on the basis of attestations of the verb and the particle as a combination in Old English (using Clark Hall 1960). Thus, while Clark-Hall (1960) do not list a VPC ‘uphealdan’, they do list the noun upheald ‘support’, which suggests that haldest ‘hold’ in (19a) can combine with the particle up. The verb heried ‘praises’ in (19b) is not attested in combination with the particle up (or any other particle) and must be analysed as a simplex verb, combining with the VPC heueth up ‘raises up’ in (19b). The same distinction can be made for the type II coordination pattern, in which an element (object or other) intervenes between the verb and the particle.

The Middle English data for particles and coordination present a mixed picture regarding the status of particles. On the one hand, the data show that particles can be coordinated (types II, IV and V), indicating that they are syntactically independent elements, i.e. phrases. Their independent status is especially apparent in the M3 example of the V X Prt & Prt coordination pattern (type V), in which an element (other than the object) intervenes between the verb and the two coordinated particles. VPCs are also found in coordination with simplex verbs in Middle English (type I), which signals an increase in the unitary character of VPCs and hence a decrease in the syntactic independence of particles.

A final criterion for phrasal status, which also signals secondary predicatehood, is transparent semantics. In Chapter 4, I argued that the semantic transparency of Old English SCVs correlates with secondary predicate status (cf. van Kemenade and Los 2003: 105–106) (see also Chapter 1 and 3 for the same argument for Present-Day English). While the majority of VPCs in Middle English have a transparent meaning, non-transparent meanings start to develop in this period as well. Recall from Chapter 4 on Old English that the meaning of Old English particles, although transparent, was underspecified to begin with, which facilitates further grammaticalisation (van Kemenade and Los 2003: 86). In this light, the development of non-transparent meanings in Middle English is not unexpected (cf. §6.2.1). An example of a Middle English VPC with a non-transparent meaning is presented in (20).
This is one of the first examples of a VPC with a non-transparent meaning, and the number of non-transparent VPCs continues to increase, leading to the huge amount of non-transparent VPCs in Present-Day English. I hypothesise that the development of non-transparent meanings lent further support for an analysis of particles as heads. This is in line with a common view in literature on grammaticalisation, according to which semantic bleaching is a prerequisite for grammaticalisation (cf. for example Bybee, Perkins and Pagliuca 1994). It should be noted, however, that this issue is not uncontroversial and another view is that semantic bleaching takes place at the end of a grammaticalisation process (cf. for example Traugott and König 1991). We cannot therefore conclusively say whether non-transparent meanings contributed to a head analysis of particles or whether it was the other way around.

The development of non-transparent meanings raises the question whether particles with a bleached meaning still fit the Resultative Lexical Conceptual Structure (R-LCS), repeated in (21a).

\[
\begin{align*}
\text{(21)} & \quad \text{a. } [[\text{CAUSE}[\text{ACT } (s)], \text{BECOME } [W(y)]], \text{BV}[V(s)]] \\
& \quad \text{b. } \text{The judge dredged up nasty details.} \\
& \quad \quad \quad [[\text{CAUSE}[\text{ACT } (\text{the judge})], \text{BECOME } [\text{up}(\text{nasty details})]], \text{BV}[\text{dredge}(\text{the judge})]]
\end{align*}
\]

The R-LCS captures the complex event semantics of VPCs. The predicate W in the R-LCS template in (21a) expresses the endstate or –point (i.e. the result) of the activity which will stop when the variable y (nasty details in (21b)) has reached the endpoint or –state. Importantly, the meaning of the predicate W (i.e. the particle) may vary from specific to completely abstract (cf. van Kemenade and Los 2003: 90). Van Kemenade and Los (2003: 90) note that “it is the variability of the content of W that accounts for the wide range of constructions that may encode the LCS…” Thus, particles whose meaning has become so bleached that they merely convey the endpoint of the activity may still lexicalise W. Middle English particles with a non-transparent meaning therefore lexicalise W just as transparent particles. They function as the primary predicate semantically, denoting an endpoint or –state, the only difference being that the endstate they express is abstract. Van Kemenade and Los’ (2003: 90) remark that “the degree bleaching of W correlates strongly with the closeness of the bond between W and the verb” underlines my view that the semantic development towards non-transparent, abstract meanings and the syntactic development towards heads are interrelated.

The data presented in this section show that the undisputed phrasal status of Old English particles declines somewhat in Middle English, with the result that particles come
to form a closer unit with the verb. An analysis of particles as heads gains ground in Middle English.

6.2.3 The syntax of early Middle English

The transitional period between Old and Middle English is characterised by some major syntactic changes. Firstly, VO word orders, already found in the Old English period (cf. Chapter 4), rapidly increased in the Middle English period. VO word order began to outnumber OV word order only after 1300 (Fischer et al. 2000: 162). OV word orders drastically decrease in frequency in the course of Middle English, and become restricted to certain syntactic contexts (Kroch and Taylor 1994; Foster and van der Wurff 1995; van der Wurff 1997; Fischer et al. 2000). Eventually, OV word orders disappeared from the English language completely, in favour of VO word order patterns.

Word order

A major change in the history of the English language is the loss of OV word orders in favour of VO word orders. In Old English, the verb predominantly follows the direct object, especially in subordinate clauses. In Old English main clauses, the verb often precedes the direct object as a result of verb movement, resulting in surface VO order. As the examples in (22)–(24) show, OV orders continue to appear throughout the Middle English period.

(22) M1 (1150–1250)
 a. for þach þe engel gabriel hefde his burde iboked
 for though the angel Gabriel had his birth foretold
 ‘for though the angel Gabriel had his birth foretold’
 (cmancriw, II.124.1591)
 b. & seide. 3ef þu wult mi nome witen; ich am katerine
 and said if you want my name know I am Katherine
 ‘and said: “If you want to know my name: I am called Katherine”’
 (cmkathe, 26.107)

(23) M2 (1250–1350)
 a. Vor huanne he bþh alle oþre kuedes overcome:
 because when he has all other wrongs overcome
 ‘because when he has overcome all other wrongs’
 (cmayenbi, 17.247)
b. Huanne þe kempe heþ his uela3e yueld
when the warrior has his fellow paid
‘When the warrior has paid his fellow’
(cmayenbi, 50.875)

M3 (1350-1420)

a. so þat unneþe he my3te eny mete holde
so that scarcely he could any meat hold
‘s so that he could scarcely hold any meat’
(empolych, VI.223.1603)

b. but he mi3t noþing spede, for þe toune was so strong,
but he could nothing succeed, because the town was so strong
‘but he could succeed in nothing, because the town was so strong’
(embrut3, 69.2098)

c. and made a fest vnto alle his folc þat þo hade him
and made a feast for all his people that who had him
holpen;
helped
‘and held a feast for all his people who had helped him’
(embrut3, 32.991)

The examples in (22)–(24) all contain an auxiliary and a main verb, which allows us to see
the exact position of the object with respect to the main verb (the object and the non-finite
main verb are in their base position). In the M1 and M2 period, OV orders as in the
examples in (22) and (23) are still common. After 1300, OV orders only appear with
quantified objects, negative objects and pronominal objects, as illustrated by the examples
from the M3 period, (24).

VO orders become much more frequent in Middle English and they appear in all clause
types, (25)–(27).

(25) M1 (1150-1250)
Ic habbe ifol3ed his iwill eaure to longe;
I have followed his will ever so long
‘I have followed his will ever so long’
(emvices1,93.1103)

(26) M2 (1250-1350)
Lord, y shal seche þy face.
Lord I shall seek your face
‘Lord, I shall seek your face’
(cmearls, 30.1236)
VO orders like the ones depicted in (25)–(27) begin to outnumber OV orders after 1300. Thus, in the M3 period, VO orders are more common than OV orders, which by that time have become restricted to certain syntactic contexts.

Kroch and Taylor (2000a) suggest that West-Midlands texts are further on the way in the transition to VO than South-Eastern texts on the basis of differences in frequency. While all (Old English) options were equally available to the grammars of both dialect areas, West-Midlands texts are more modern in showing more VO orders than OV orders, while the South-Eastern texts are conservative and show more OV than VO word orders. The demise of OV word order happens faster in some contexts than in others. Foster and Van der Wurff (1995) found that OV orders survive longer in verse than in prose texts, which, according to Fischer et al. (2000: 162) is very likely to be due to “the stronger tendency in verse to exploit linguistic resources for the sake of rhyme, metre and emphasis”. Van der Wurff (1997) shows that the decline of OV word orders takes place at a different pace in different type of clauses. Thus, in fifteenth century English, there are only two contexts which show surface OV word order, namely constructions with an empty subject (e.g. coordinate and relative clauses) and clauses containing an auxiliary and an object with a negative or quantitative element.

It has often been suggested that the loss of OV orders and the shift to postverbal particles go hand in hand (Fischer et al. 2000: 82 note the two changes are “probably related”; van Kemenade and Los 2003). Indeed, the two changes appear to have taken place at roughly the same time and there is a clear cross-linguistic generalisation that OV languages with a particle/prefix system have preverbal particles, whereas VO languages have postverbal particles. This generalisation follows from the simple fact that particles, being VP-elements, will follow the verb in languages with a head-initial VP and will precede the verb in languages with a head-final VP.

Recent research (e.g. Kroch and Taylor 1994, 2000a) has shown that the change from OV to VO word order was not as abrupt as earlier (standard) accounts (e.g. Canale 1978; van Kemenade 1987; Lightfoot 1991) have suggested. This contrasts with the relatively abrupt shift in particle position. Although Fischer et al. (2000: 82) correctly point out that particles could still occur in preverbal position until far into the Middle English period, such examples are often from verse texts or involve a topicalised particle (cf. van Kemenade and Los 2003: 108). The preverbal particle pattern ceases to be productive early on in the Middle English period, whereas OV word order is still productive in early Middle English.
(Kroch and Taylor 1994, 2000a). Thus, while there exists a clear connection between the loss of OV orders and the rise of postverbal particles, the different time span of the two changes indicates that other factors must have been at play in the shift in particle position (see §6.2 and Chapter 7).

Verb-Second

Finite verb movement, one of the main characteristics of Old English syntax, continued to exist well into the Middle English period. The so-called verb-second rule, common to the Germanic languages in general, causes the finite verb to move to the position after the first constituent of the clause. While there is ample evidence for verb movement in Old English main clauses (cf. Chapter 4, §4.2.1.2), verb movement shows a sharp decline in the late Middle English period before disappearing altogether. As in Old English, there is a positional discrepancy between nominal and pronominal subjects with respect to the finite verb in Middle English (cf. Fischer et al. 2000: 130). This is attested in main clauses involving topicalisation, for example. Examples are given in (28), taken from Fischer et al. (2000: 130).

(28) a. 3ewiss hafð godd forworpen ðan ilche mann
certainly has God rejected that same man
‘certainly God has rejected that same man’
(Vices and Virtues, 13.31)

b. Ðas þing we habbað be him gewritene
these things we have about him written
‘These things we have written about him’
(ChronE(Plummer), 1086.139)

As the examples in (28) show, clauses involving topicalisation show subject-verb inversion when the subject is nominal, (28a), but not when the subject is pronominal, (28b). The same positional difference appears in clauses involving multiple negation; see Fischer et al. (2000: 130-131).

Fischer et al. (2000: 130) point out that the smaller number of OV orders in Middle English compared to Old English does not seem to affect the distribution of the finite verb, implying that Middle English is a VO language with verb second. The date of the decline of verb second is disputed. According to Fischer et al. (2000: 137), verb second was lost during the late Middle English and early Modern English period, showing a sharp decline in verb second in topic initial constructions in the fourteenth and fifteenth century. Kroch and Taylor (1997) show that both nominal and pronominal subjects are inverted in topic initial sentences in the Northern text *The Rule of St. Benet*. Trips (2002) examines the position of nominal and pronominal subjects in the Northern *Ormulum*, and finds that nominal as well as pronominal subjects tend to invert in verb second contexts. In this respect, the grammar of the *Ormulum* resembles the Scandinavian verb second grammar, which Trips takes as evidence for Scandinavian influence on the syntax of English. I have nothing conclusive to
add to this discussion, but my data show that particles can still be stranded by verb movement far into the Middle English period. Further research into the decline of verb second is needed to get a clear picture of its exact loss.

We have seen that the position of particles serves as a diagnostic for determining the underlying position of the verb in Old English (Koopman 1985, 1990; van Kemenade 1987, Pintzuk 1991, 1999 among many others, all based on Koster’s 1975 tests for Dutch). The same particle diagnostic can be used for finding evidence for verb movement in the Middle English period. Thus, whenever a postverbal particle is separated from the finite verb by non-VP material, we know that the verb has moved to a higher position in the clause. An early Middle English example is given in (29).

(29) Strupeð hire sterk-naket, and heoued hire on heh up
Strip her stark-naked, and lift her on high up
‘Strip her naked, and lift her up high’
(cnmarga, 84.471)

One piece of evidence for verb movement in (29) is the non-VP material intervening between the verb and the particle, i.e. the PP on heh ‘on high’. Other evidence comes from the fact that the verb heoued ‘lift’ is imperative, indicating that the verb has moved to a higher functional projection (outside VP).

Examples like (29) indicate that the particle is still an independent syntactic element in early Middle English, despite the drastic increase of the V–Prt pattern in this period. In a case-study of the particle up, Elenbaas (2003) has shown that there is still robust evidence for verb movement in the early Middle English period. The same picture emerges from the distribution of other particles. This shows that particles are still syntactically independent and can be analysed as phrases, even though they may also be analysed as heads, a development which started in the Old English period, as discussed in Chapter 5.

6.2.4 From preverbal to postverbal particle

The group of (early) Middle English particles includes many of the Old English particles discussed in Chapter 4 (§4.2.3). Thus, we find up ‘up’, ut/st ‘out’, in ‘in’, dun(e)/doun ‘down’, awet ‘away’, of ‘off’, aboute ‘about’, forð ‘forth’. Many combinations attested in Old English are still around in Middle English. Some examples are given in (30).

<table>
<thead>
<tr>
<th>Old English</th>
<th>Middle English</th>
</tr>
</thead>
<tbody>
<tr>
<td>upcuman</td>
<td>come up</td>
</tr>
<tr>
<td>utdrifan</td>
<td>drive out</td>
</tr>
<tr>
<td>adunfeallan</td>
<td>fall down</td>
</tr>
<tr>
<td>inberan</td>
<td>carry in</td>
</tr>
<tr>
<td>ofaniman</td>
<td>take away/off</td>
</tr>
</tbody>
</table>

In some cases, the verb in the combination has changed as a result of lexical borrowings. Compare Old English ofaniman ‘to take away’ with Middle English taken of ‘to take away/off’.
and Old English ofaslean ‘to smite off’ with Middle English smiten of ‘to smite off’. Take is an Old Norse loan and replaced the Germanic verb niman used in Old English. The development of the verb smiten is less clear. Old English slæan has survived as the Present-Day English verb to slay, and the Middle English verb smitten is still with us today as the verb to smite (although it is mainly restricted to literary usage). The Middle English verb beren ‘to carry’ (Old English beran) in (30) was replaced later on in the Middle English period by the French loan carry. The change in position with respect to the verb gives them a very modern look. We will see in §6.3, however, that Middle English verb-particle combinations (VPCs) allowed more (types of) intervening elements than Present-Day English VPCs. The very fact that particles shifted from preverbal to postverbal position is strong evidence in favour of the phrasal status of Old English particles and verb-particle combinations.

6.2.5 The position of particles in the early Middle English period

The transition to postverbal particles is described at length by Hiltunen (1983) and the figures in Table 2 and 3 (from Hiltunen 1983: 108,110) reflect the shift in particle position.

<table>
<thead>
<tr>
<th></th>
<th>prt(…)V</th>
<th>V(…)prt</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>main</td>
<td>45</td>
<td>31</td>
<td>102</td>
</tr>
<tr>
<td>coordinate main</td>
<td>98</td>
<td>50</td>
<td>97</td>
</tr>
<tr>
<td>subordinate</td>
<td>60</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>203</td>
<td>47</td>
<td>229</td>
</tr>
</tbody>
</table>

Table 2: The position of the particle in late Old English prose (Hiltunen 1983: 108)

<table>
<thead>
<tr>
<th></th>
<th>prt(…)V</th>
<th>V(…)prt</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>main</td>
<td>7</td>
<td>4</td>
<td>169</td>
</tr>
<tr>
<td>coordinate main</td>
<td>30</td>
<td>14</td>
<td>187</td>
</tr>
<tr>
<td>subordinate</td>
<td>23</td>
<td>14</td>
<td>138</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>11</td>
<td>494</td>
</tr>
</tbody>
</table>

Table 3: The position of the particle in early Middle English prose (Hiltunen 1983: 110)

The figures in Tables 2 and 3 show a sharp contrast in particle position between the late Old English and the early Middle English period. In the subordinate clause environment, the percentage of preverbal particles has dropped from 67% in late Old English to only 14% in early Middle English. The percentage of postverbal particles, on the other hand, has increased from 33% in late Old English to 86% in early Middle English. The figures seem to suggest that subordinate clauses are the most innovative environment in showing the most postverbal particles, but this picture is deceptive. In Old English, main clauses showed
more postverbal particles than subordinate clauses, because of verb movement (which played only a minor role in subordinate clauses). Moreover, the decline of OV is relatively greater in subordinate clauses than in main clauses, because subordinate clauses showed more OV orders in Old English. It therefore looks as if the growth of postverbal particles is greatest in subordinate clauses in early Middle English, when postverbal particles have become predominant in all clause types.

Hiltunen (1983) links the rise of the postverbal pattern to the increase in VO word orders. He notes that “the postverbal position steadily gains ground along with the decline of the S.O.V. syntax” (Hiltunen 1983: 125). As I have already hinted in §6.2.2, it is not the case that the shift to postverbal particles exactly follows the loss of OV orders and the rise of VO orders. I will in fact argue later on in this chapter that the shift to postverbal particles was far more abrupt than Hiltunen suggests.

We can shed more light on the impact of the transition to postverbal particles when we differentiate between finite and non-finite verbs, as we did for Old English. In §6.3, I will present the results of a corpus study, showing that there is ample evidence for particle stranding by verb movement throughout the Middle English period. Hiltunen (1983: 111) notes that “by around 1200 the V(…)a pattern can be said to have established its supremacy” and connects this with the establishment of VO as the underlying order around this time (cf. Canale 1978). My results (cf. §6.3) show that verb movement continues to exist even when the underlying word order has become VO (cf. also Fischer et al. 2000).

6.2.6 Middle English VPCs and word formation

A characteristic feature of Present-Day English VPCs is that they participate in word formation processes (cf. Chapter 1). In Old English, nouns or adjectives formed from SCVs or ICVs are rare. The earliest evidence of English VPCs productively taking part in word formation comes from the Middle English period. The fact that VPCs can be the input to word formation in Middle English signals an increase in the syntactic dependence of particles and hence an increase in unity of the verb and the particle.

Table 4 presents the figures for nouns formed from VPCs in the Middle English period (period M4 excluded).
Table 4 shows that action nouns, i.e. nouns ending in –ing, become much more frequent after the M1 period. In the M2 period, nouns in –ing predominantly have a prenominal particle, while in the M3 period, the particle is predominantly postnominal in these nouns. Some examples are given in (31) and (32).

(31)
M2

a. þe _doungoing_ of þe sunne;
the _down-going_ of the sun
‘the going down (= setting) of the sun’
(cmearlps, 77.3405)
b. _Dat_ settest þe cloude þy _wendyng up_;
who appoints the clouds _your_ _going_ up
‘who appoints the clouds for your ascent’
(cmearlps, 125.5458)

(32)
M3

a. _whan_ þey _had longe_ _i-wope_ þe _injustice_ _of_ her _violent_ _out_ _puttyng_;
when _they_ _had long_ _bewept_ the _injustice_ _of_ her _violent_ _out_ _putting_
‘when they had bewept the injustice of her violent putting out (= expulsion) for a long time’
(cmpolyeh, VIII,95.3628)
b. and the _book_ of the _takyng up_ _of_ the _body_ _of_ _Seynt_ _Marye_ _to_ _heuen_;
and _the_ _book_ _of_ _the_ _taking_ _up_ _of_ _the_ _body_ _of_ _Saint_ _Mary_ _to_ _heaven_
‘and the book of the taking up (= lifting) of Saint Mary’s body to heaven’
(cmpurvey, I,2,83)

The nominalisation pattern of the examples with a postnominal particle resembles that of Present-Day English VPC nominalisations. In Present-Day English, the of-PP is not allowed
to intervene between the noun and the particle, it must follow the particle: PDE *the knocking down of the vase*, *the knocking of the vase down*. Nominalisations of this type (the [N V-ing of NP]) are first attested in the M3 period. I have found no examples in which the of-PP intervenes between the noun and the particle, suggesting that the pattern is indeed the same as the Present-Day English one.

There are two examples that involve the ending –and, the ME Northern present participle ending which descended from the Old English present participle ending –ende (see for example Lass 1992). The examples, from the M2 text *Earliest Complete English Prose Psalter*, are identical and are given in (33).

(33) a. þou put out þe vparrisand o3aines me.
 you put out the up-rising against me ‘you put out those who rise up against me’
 (emearlps, 19.768)

b. þou put out þe vparrisand o3aines me
 you put out the up-rising against me
 ‘you put out those who rise up against me’
 (emearlps, 16.625)

Vparisand ‘those who rise up against me (≈ agitators)’ is a verbal noun whose form is that of a present participle. Note that it has the Northern form –and, while the text is written in the East-Midland dialect. Burrow and Turville-Petre (1996) note that this form is also found in Southern dialects, “particularly around London” (Burrow and Turville-Petre 1996: 33). Evidence for the nominal rather than verbal status of *vparisand* comes from the presence of the determiner *þe* ‘the’.

Nouns that do not end in –ing often have an Old English precursor. I found 8 examples of *in3(e)ong* in M1 texts, for which the Old English equivalent is the noun *ingang* ‘entrance, access’ formed from the SCV *ingangan* ‘to go in, enter’. I found 1 example of *utgang* in the *Peterborough Chronicle* (M1 period), which is exactly the same as the Old English noun *utgang* ‘going out, departure, exit’, formed from the verb *utgan* ‘to go out’. I found 5 examples in early Middle English of a noun whose Old English equivalent is *ingyte* ‘pouring in’ formed from *ingeotan* ‘to pour in, fill’. It occurs in the forms *in3ied* and *in3ehied*, the latter of which contains a weakened form of the past participle prefix *ge*.

The M3 text Trevisa’s *Polychronicon* contains two examples which contain the same deverbal noun and particle, but which differ with respect to the position of the particle, (34).
(34) a. þat was byfalle for þe blyndynge and puttynge out of kyng Constantyn his eie³en.

 CONSTANTYN his eyes

‘that it happened for the blinding and the putting out of king Constantine’s eyes’

CMPOLYCH, VI, 283.2085

b. whan þey had longe i-wope þe wrong of her violent out puttynge;

out-putting

‘when they had bewept the injustice of her violent putting out (=expulsion) for a long time’

CMPOLYCH, VIII, 95.3628

These examples show variation in the position of the particle with respect to the noun within one and the same text. A closer look at both examples reveals that the reason for the positional variation may be of a semantic nature. The meaning of the noun puttynge out is transparent: the eyes of king Constantine are quite literally put out, and the meaning of the nominalised VPC can be inferred from that of its parts. The noun out-puttyng also involves a sense of removal, but this noun involves a sense of away, forth rather than out. The OED entries for ‘outputting’ are 1. expulsion, ejection; evacuation 2. putting forth, holding out, stretching forth. The OED lists the example from the Poly chronicon under the second entry, providing the Latin translation of violent out puttyng: violentæ expulsionis injuriam. The meaning of nouns with prenominal particles appears to be less transparent. Compare also the noun goinge out ‘going out’ and outgoing ‘out-going’ (i.e. womb) in (35).

(35) a. Dou art my God fram be out-going of my moder;

you are my God from the out-going of my mother

‘You are my God from my mother’s womb’

CMEARLPS, 24:956

b. that was xxx. 3eer aftir the goinge out of Abraham fro Aran.

that was thirty year after the going out of Abraham from Haran

‘that was thirty years after Abraham’s departure from Haran’

CMPURVEY, I, 35.2211

6 Present-day English has pre- and postverbal pairs which show a difference in meaning. Examples are overtake — take over, outlive — live out (from Claridge 2000: 87). Claridge (2000: 87) mentions an observation made by Burnley (1992: 445) that such pairs also existed in Middle English, but that they often did not involve a meaning difference. She cites fall by — byfallen ‘happen’, flee out — outflee ‘expel, banish’, or look over — overlook ‘survey from on high’.
In (35a), the noun *out-going* means ‘womb’, whereas the noun *goinge out* in (35b) quite literally means ‘departure’. The semantic distinction between pre- and postnominal particles is in line with the observation that the meaning of prefixes is more bleached than that of particles (cf. Hiltunen 1983: 94; §6.2.1).

The increase in nouns formed from VPCs in the Middle English period is significant to my claims about the structural development of English particles and VPCs. As discussed in Chapter 1, the fact that VPCs take part in word formation processes signals the unitary character of the verb and the particle. Thus, the first appearances of nouns formed from VPCs in the Middle English period indicate an increase in the syntactic dependence of particles.

6.3 A corpus study of early Middle English particles

6.3.1 The corpus

The Penn-Helsinki Parsed Corpus of Middle English (PPCME2; Kroch and Taylor 2000b) consists of roughly 1.2 million words and is searchable with the search engine CorpusSearch (Randall 2003). The texts included in the PPCME2 are grouped into four main time periods, given in (36).

(36) Period M1 (1150-1250) 195,494 words
 Period M2 (1250-1350) 93,999 words
 Period M3 (1350-1420) 385,994 words
 Period M4 (1420-1500) 260,116 words

In addition to the four periods presented in (36), texts may have an alternative classification, depending on what is known about their composition and manuscript date. Thus, a text whose composition date lies between 1250-1350 (M2), but whose manuscript date lies between 1350-1420 (M3) is classified as M23. An unknown composition date is marked by the digit X (as in MX1, MX4).7

The texts in the corpus are also classified according to dialect, comprising Kentish, Southern, West Midlands, East Midlands and Northern. The Kentish, Southern and Northern dialects are least represented, especially in the M1 period.

6.3.2 Study 1: The position of the particle in the (early) Middle English period

Since the focus of the diachronic part of this dissertation is on the transition from the Old English to the Middle English period, I have collected data from the M1, M2 and M3

7 The word counts in (36) do not include the texts whose composition date and manuscript date differ. The information is taken from the PPCME2 website http://www.ling.upenn.edu/hist-corpora/PPCME2-RELEASE-2/index.htm.
As in the Old English corpus study, I have distinguished between finite verbs and non-finite verbs. This not only gives a clear picture of the nature and rate of the changing position of particles, it also enables us to isolate evidence for particle-stranding after verb movement.

In the next subsections, I will discuss the position of particles in different clause types in each period. My study of the position of the particle in the early Middle English period is based on texts classified in the M1(1150–1250), M2(1250–1350) and M3(1350–1420) period of PPCME2. I have also collected data from the MX1 period, because of the scarcity of early Middle English texts.

Particles underwent a major change in the transition from Old English to Middle English (cf. Hiltunen 1983). At the beginning of the Middle English period, the high frequency of postverbal particles at the expense of preverbal particles is striking. Preverbal particles predominated in Old English (cf. Chapter 4 and 5), especially in contexts in which verb movement plays a marginal role, such as subordinate clauses. This situation has altered greatly in the transition to the Middle English period, witness the fact that particles predominantly occur postverbally, even in non-verb movement contexts, in the early Middle English period. The relevant figures for the M1, MX1, M2 and M3 period are presented in Table 5.

8 See Appendix II for a complete list of M1, MX1, M2 and M3 texts by PPCME2 (Kroch and Taylor 2000b) filename, including the text name and a reference to the text edition.

9 MX1 refers to texts whose composition date is unknown and whose manuscript date is the M1 (1150–1250) period (Kroch and Taylor 2000b).
Table 5: The position of the particle in the M1, MX1, M2, and M3 periods

Table 5 shows that postverbal particles predominate in all clause types from early Middle English onward. In the M1 period, the particle is in preverbal position in 6.7% of all main clauses, in 3.3% of all coordinate main clauses and in 12.6% of all subordinate clauses. The
figures for MX1 main clauses roughly correspond to those for M1 main clauses. The MX1 period shows a higher percentage of preverbal particles in coordinate main and subordinate clauses, possibly reflecting an earlier composition date. The percentages of preverbal particles in the M2 period are similar to those in the M1 period. In the M3 period, the percentages of preverbal particles are extremely low.

The fact that the figures for main clauses are influenced by verb movement (yielding postverbal particle orders) does not weaken the observation that postverbal particle order is predominant from early Middle English, because the postverbal pattern also predominates in subordinate clauses in the M1, M2 and M3 periods. The particle is in postverbal position in 152 out of a total of 174 subordinate clause examples (87.4%) in the M1 period. A similar percentage of postverbal particles in subordinate clauses is found in the M2 period (87.1%). In the M3 period, the particle occurs in postverbal position in a staggering 99.6% of all subordinate clauses. Table 5 also shows that postverbal particles are predominant in coordinate clauses in all three periods.

The figures in Table 5 confirm Hiltunen’s (1983) findings about the development of English particles in the transition to the Middle English period. In the next subsections, I will investigate the position of the particle per clause type, distinguishing between finite and non-finite verbs, in order to get a more detailed picture of the position of the particle in Middle English. The study will show to what extent particles can still be stranded by verb movement in Middle English. It will also reveal information about the underlying position of the particle.

Main clauses

In the Old English period, the particle predominantly occurred in a position after the verb in main clauses as a result of verb movement. In the early Middle English period, the situation is no different in the main clause environment (cf. Table 5). In this section I will investigate to what extent postverbal particles in the M1/MX1, M2 and M3 period are still the result of verb movement and to which extent they are base-generated in postverbal position. The figures in Table 6a represent the position of the particle with respect to the finite verb.

10 The figures for MX1 subordinate clauses differ in that the preverbal particle pattern shows up in 54.2% of the examples. These data thus seem to reflect an older grammar and therefore an earlier composition date than their M1 manuscript date.
As Table 6a shows, there are only 10 main clauses in the M1/MX1, M2 and M3 periods in which the particle precedes the finite verb. In 9 of these 10 main clauses, the particle immediately precedes the finite verb. There are no main clauses from the M1 period in which the particle immediately precedes the finite verb. The two examples from the MX1 period are presented in (37). Both are from the *Trinity Homilies*.

(37) a. Ðe fet up aweigeð.
the feet up lift
‘The feet lift up’
(cmtrinit, 181.2485)

b. Ðe niht i s forð-gon;
the night is forth-went
‘The night is gone away’
(cmtrinit, 9.104)

The figures in Table 6a further show that there are 3 main clauses in which the particle immediately precedes the finite verb. The examples, all from the *Earliest English Prose Psalter*, are given in (38).

(38) a. Ðe kynges of erþe vpstonden,
the king of earth up-stood
‘The earthly kings stood up’
(cmearlps, 2.29)

b. Myn enemys vp-braided me aldai,
my enemies reproached me continually
‘My enemies reproached me continually’
(cmearlps, 121.5340)
The VPC vp-braided ‘to reproach’ in example (38b) still exists in Present-Day English, to
upbraid. It is most probably an inseparable verb, rather than separable and should therefore
not be included. The example in (38c) is dubious too, because the combination of the
particle vp ‘up’ and the verb hoped ‘hoped’ (ME hopen, OE hopian ‘to hope’) does not occur
elsewhere and it is not certain that it constitutes a VPC. The particle vp ‘up’ appears to add a
superlative meaning. Besides these examples, the Earliest English Prose Psalter has a relatively
high number of preverbal particles, which can often be attributed to the fact that the text is
a slavish translation from the Latin original (cf. van Kemenade and Los 2003: 108).

There are 4 main clauses from the M3 period which show the Prt Vf pattern. All 4
examples are from the same text, The Tale of Melibee, (39).

(39) a. Up roos thanne an advocat that was wys,
up rose then a lawyer who was wise
‘Then a lawyer who was wise arose’
(cmctmeli, 218.C2.66)
b. Up stirten thanne the yonge folk atones,
up started then the young people simultaneously
‘Then the young people simultaneously’
(cmctmeli, 219.C1.80)
c. Up roos tho oon of thise olde wise,
up rose then one of these old wise
‘Then one of these old wise men arose’
(cmctmeli, 219.C1.84)
d. A surgien, by licence and assent of swiche as weren wise, up roos
a surgeon by licence and assent of such as were wise, up rose
‘A surgeon arose by licence and assent of those who were wise’
(cmctmeli, 218.C2.58)

In all 4 examples except (39d), the particle as well as the verb appear to have been
topicised. The order may therefore be ascribed to a stylistic device, although that still
leaves the preverbal order unaccounted for.

As in Old English, a preverbal particle may occur separated from the verb it combines
with in the early Middle English period. The Prt…Vf pattern is very rare in early Middle
English, however. There is only 1 case of Prt…Vf in an M1 main clause and it is not
attested in main clauses from MX1, M2 and M3 texts. This M1 example is given in (40).
THE RISE OF THE POSTVERBAL PARTICLE

(40) Forr þeþenn ut we comenn.
for thence out we come
‘Because we come out thence’
(emorm, I,259.2099)

The example in (40) is from the *Ormulum*, which is written in verse. The fact that the particle occupies a position before the subject shows that the particle has been fronted.

The extremely low frequencies of the preverbal particle patterns stands in sharp contrast to the high number of postverbal particle patterns in main clauses in early Middle English. Postverbal patterns are predominant as early as the M1 period, the immediately postverbal pattern being the most frequent one. In the M1/MX1 period, the particle occurs immediately after a finite verb in 75 out of a total of 155 main clauses. Some M1/MX1 examples of the Vf Prt pattern are given in (41).

(41) a. Ha hackede of his heaued
They cleaved off his head
‘They cleaved off his head’
(emaneriw, II.220.3190)

b. Ðis ilche justise *warp ut* him ðe was briht angel on
this same justice threw out him who was bright angel in
heuene.
heaven
‘This same justice cast out him who was a bright angel in heaven’
(enrices1, 105.1275)

c. Eft þurh þisse tacne Moyses *werp ut* þet
afterwards through this sign Moses threw out
the welle weter of þan herda flinte
spring water of the hard rock
‘After this sign, Moses cast spring water out of the hard rock’
(emlambx1, 129.1281)

The order in (41a) looks very modern. The V–Prt–Obj order is highly frequent in Present-Day English (cf. Dehé 2002). The example in (41b) involves a heavy object: the pronoun ‘him’ is followed by a relative clause. The length of the object may have influenced the word order, as heavy constituents tend to occur clause-finally. In example (41c), the verb and the particle are followed by a direct object and a PP. The example displays a pattern which is no longer possible in Present-Day English, (42).

(42) a. Aunt Betsy threw Uncle Dick out of the house.

b. *Aunt Betsy threw out Uncle Dick of the house.

Later examples of main clauses displaying the Vf Prt pattern are given in (43), M2, and (44), M3.
(43) a. **Sende out þy ly3t and þy soþenes;**
 send out your light and your truth
 ‘emit your light and your truth’
 (cmcarlps, 52.2246)

 b. Do **aros up ure lord**
 then rose up our Lord
 ‘Then our Lord ascended’
 (cmkentsc, 219.142)

(44) a. & when þai saw þat he was dede, þai **smyten of**
 and when they saw that he was dead, they cleaved off
 his heuede;
 ‘and when they saw that he was dead, they cleaved off his head’
 (embrut3, 107.3237)

 b. And þerfore after þat the sarazines **beten down** the walles
 and therefore after that the Saracens beat down the walls
 ‘And therefore the Saracens beat down the walles afterwards’
 (cmmandev, 29.721)

 c. And þerfore **lift up þin hert with a blynde steryng of**
 and therefore lift up your heart with a blind stirring of
 loue;
 ‘and therefore exult your heart with a blind stirring of love’
 (cmcloud, 81.407)

In example (43a), the verb **sende** ‘send’ is imperative, which indicates that the verb has moved. The particle has either been stranded by verb movement (invisible in the surface string), or it has moved along with the verb. There is no conclusive evidence for either of these analyses, because there is no overt subject. In Chapter 7, I will argue that the verb and the particle form a complex syntactic head in examples similar to the one in (43a). In example (43b), the VPC **aros up** ‘rose up’ precedes the subject **ure Lord** ‘our Lord’, which indicates that the entire VPC has moved (particle and verb are a complex verb). Notice, however, that the example is unaccusative and that **ure Lord** ‘our Lord’ is really the underlying internal argument of the verb. Since we cannot be sure about the position of **ure Lord** ‘our Lord’ (it could be in subject or object position), the evidence for verb movement is obscured. The word order patterns in the examples in (44) closely resemble Present-Day English word order. In (44c), the verb **lift** is imperative, indicating verb movement.

Examples in which the postverbal particle is separated from the verb show a wider range of possible intervening elements than in Present-Day English. The V…Prt pattern is less frequent in M1, M2 and M3 main clauses than the V–Prt pattern and occurs most frequently with a finite verb. In the M1 period, there are 53 main clauses showing the
THE RISE OF THE POSTVERBAL PARTICLE

Vf...Prt pattern against 75 main clauses showing the Vf Prt pattern. M1 examples of the Vf...Prt pattern are given in (45).

(45) a. Of his speatewile muð, sperclede fur ut.
of his spitting mouth scattered fire out
‘(He) scattered fire out of his spitting mouth’
(cmmarga, 68.212)

b. ha Spit hope Al ut & þe swetnesse þer of; mid
she spits hope all out and the sweetness thereof with
wordly words
‘With worldly words she spits all hope and the sweetness thereof out’
(emancriw, II.64.679)

The pattern Vf...Prt often provides evidence for verb movement and concomitant stranding of the particle, as in the example in (45b). The postverbal particle is not only separated from the verb by a direct object (hope 'hope'), but also by an adverb (al 'all'), a non-VP element, which shows that the verb has moved out of the VP. Thus, in M1 main clauses there is still evidence that the particle can be stranded by verb movement.

The pattern Vf...Prt is not very frequent in main clauses in the M2 period. It occurs in only 6 out of a total of 54 main clauses containing a finite verb and a particle (11.1%). All 6 examples are from the Earliest English Prose Psalter. Examples are given in (46).

(46) a. As he ys iuged, go he out condemned,
as he is judged, goes he out condemned
‘As he is judged, he goes out condemned’
(cmearlps, 136.5966)

b. whi puttest tou me out?
why put you me out
‘Why do you put me out?’
(cmearlps, 52.2243)

c. hj ladden me out,
they lead me out
‘they lead me out’
(cmearlps, 52.2247)

The examples in (46a,b) involve subject-verb inversion, which shows that both examples involve finite verb movement. The example in (46b) is a wh-question involving V-to-C movement. The word order in example (46c) resembles the Present-Day English word order: the pronominal object occurs between the verb and the particle.

There are 39 main clauses in the M3 period which display the Vf...Prt pattern. Some examples are presented in (47).
Both examples in (47) contain evidence for verb movement. In (47a), the finite verb *wente* ‘went’ has inverted with the subject *3e* ‘you’. The finite verb *geder* ‘gather’ in (47b) is imperative, which means that it has moved to C.

The findings for verb movement in M1, M2 and M3 main clauses are presented in Table 7.

<table>
<thead>
<tr>
<th>Main</th>
<th>V1 PRT</th>
<th>V1...PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ VM</td>
<td>− VM</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>M1</td>
<td>10</td>
<td>15.6</td>
</tr>
<tr>
<td>M2</td>
<td>17</td>
<td>38.6</td>
</tr>
<tr>
<td>M3</td>
<td>28</td>
<td>17.9</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>20.8</td>
</tr>
</tbody>
</table>

Table 7: Verb movement (VM) in main clauses in the M1, M2 and M3 periods

These figures show that there is robust evidence for verb movement in all three periods, although the figures for the M2 period are less convincing, with only 50% of V1...PRT cases providing evidence for particle stranding as a result of verb movement. The +VM V1 PRT cases are all imperatives. Verb movement in these examples may involve string vacuous movement of the (imperative) verb only, stranding the particle, or they may involve movement of the entire VPC. In some cases, there is conclusive proof that the VPC complex has moved. In such examples the object follows the verb and the particle. The figures are given in Table 8.
Table 8: Verb movement and VPC movement in M1, M2 and M3 main clauses

In Table 8, ‘Vf Prt’ represents those examples in which either the verb has moved string-vacuously, stranding the particle, or the entire VPC has moved. ‘Vf Prt Obj’ represents examples in which the position of the object provides evidence for VPC (complex verb rather than verb) movement.

Table 6b presents the figures for the position of the particle with respect to the non-finite verb in the M1, MX1, M2 and M3 period.

Table 6b: The position of the particle with respect to the non-finite verb in M1, MX1, M2, and M3 main clauses

As with finite verbs, particles only rarely occur in a position before the non-finite verb in the early Middle English period. Table 6b shows that there are no particles preceding the non-finite verb in main clauses from the MX1 and M3 period. There are 8 main clauses from the M1 period in which the particle immediately precedes a non-finite verb. Examples are given in (48).
(48) a. & **up halden** ham þæt ha ne fallen I þe dung
and up hold them that they not fall in the dungeon
of sin
‘and support them so that they do not fall in the dungeon of sin’
(emancrín, II.113.1421)
b. **ut-iworpen** ðurh dieules lare,
they are out-cast through devil’s teaching
‘they are cast out through the teaching of the devil’
(cmvice1, 73.833)

The example in (48a) is from the *Ancrene Riwle*, a text from the West-Midlands area. Example (48b) is from *Vices and Virtues*, an East-Midlands text, which shows quite a few preverbal particle orders. These are most probably a retention from the earlier Southern version. The pattern Prt V nf is attested in 2 main clauses in M2 texts. They are given in (49).

(49) a. in þe am ich **out-caste** of þe wombe.
in you am I cast out of the womb
‘In you I am cast out of the womb’
(cmearlps, 24.954)
b. and ben hij **outcusten** of her woninges.
and they are cast out of their dwelling places
‘and they are cast out of their dwelling places’
(cmearlps, 136.5976)

There is only one example of a main clause containing the Prt…V nf pattern. It is from the M1 text *Vices and Virtues* and is given in (50).

(50) ‘Nu scal ðe alder of ðis worlde **ut** bien 3edriuen.’
‘Now shall the elders of this world be driven’
(cmvice1, 111.1332)

In (50), the preverbal particle *ut* ‘out’ is separated from the non-finite verb *3edriuen* ‘driven’ by the auxiliary *bien* ‘are’. The example is from *Vices and Virtues* which, as noted above, is a text from the East-Midlands area, but was copied from a Southern version and has retained some Southern forms. The pattern in (50) may well represent one of these Southern retentions.

The pattern V nf Prt is attested 22 times (out of a total of 156 main clauses) in the M1/MX1 period. Some examples are given in (51).
The pattern \(V_{nf}\) Prt, as in the examples in (51), is telling as it represents underlying postverbal word order. The percentage of \(V_{nf}\)-Prt cases in the M1 and MX1 period is 18.8\% (82 out of 437 cases), which is significantly higher than that in the O3 period, which shows a percentage of 1.9\% (cf. Chapter 4).

In the M2 period too, the predominant position of the particle with respect to the non-finite verb is immediately postverbal (19 out of a total of 27 main clauses).

The pattern \(V_{nf}\) Prt is the most frequent postverbal pattern with a non-finite verb. The pattern occurs in 40 out of a total of 50 main clauses containing a non-finite verb and a particle (80.0\%). Examples are given in (53).

In the M3 period, there are no attestations of preverbal particle patterns with a non-finite verb and the \(V_{nf}\) Prt pattern is the most frequent postverbal pattern with a non-finite verb. The pattern occurs in 40 out of a total of 50 main clauses containing a non-finite verb and a particle (80.0\%). Examples are given in (53).
As the figures in Table 6b show, the percentage of V$_{nt}$ Prt patterns in the M3 period is the highest of all periods studied. M3 particle patterns already closely resemble the distribution of particles in Present-Day English.

There are 5 main clauses from the M1/MX1 period in which the sequence of the non-finite verb and the particle is interrupted by other elements. They are given in (54).

(54) a. Nelle iche nefre gon þider in;
not-want I never go there in
‘I never want to go in there’
(cmtrinit, 213.2972)

b. & speowen hit ut þer
and spit it out there
‘and spit it out there’
(emancerv, II.69.778)

c. & a33 wass þe33re wuke gan All ut tatt da33 att
and always was their week gone all out that day at
evening
‘and always their week was gone out completely that day in the evening’
(cmorm, I,150.1242)

d. & swa me schal amit te burh setten hit on heh up.
and so me shall amid the town set it on high up
‘and so shall set me up on high in the centre of the town’
(cmikathe, 36.270)

e. & igurd he is ham on;
and girded he is them on
‘and he is girded on them’
(cmurga, 86.507)

The particle patterns in the examples in (54) show that there were more possibilities with respect to intervening elements in the early Middle English period. The combination of the verb gon ‘go’ and the particle in in (54a) may not in fact be a VPC. The combination þider in ‘therein’ may be treated as one adverbial phrase. The pattern displayed in example (54d) is peculiar in that the non-finite verb igurd ‘girded’ precedes the rest of the clause. On closer inspection, the particle on should be treated as a postposition rather than a particle, and the example should therefore be excluded. The pattern in (54b) resembles the Present-Day English situation: the pronominal object intervenes between the verb and the particle. In (54c), the adverb all intervenes, which is also possible in Present-Day English. Example (54d) shows that more elements are allowed to intervene in Middle English than in Present-Day English: the sequence of the verb and the particle is interrupted by a pronominal object and a prepositional phrase.

In the M2 and M3 period, the particle pattern V...Prt is more modern than in the M1/MX1 period, given the type of elements that intervene between the verb and the
THE RISE OF THE POSTVERBAL PARTICLE

particle. There is only one main clause from the M2 period involving the Vₙf…Prt pattern, (55). There are 10 main clauses showing the Vₙf…Prt pattern from the M3 period. Some examples are given in (56).

(55) And ure lord was ileid him don to slepe ine þo ssipe and our Lord was laid himself down to sleep in the ship er þane þis tempeste aroos before then this storm arose

‘and our Lord laid himself down to sleep in the ship before the storm arose’ (cmkentse, 219.135)

(56) a. and God schal caste hym doun bi swerd in his lond;
and God shall cast him down by sword in his country

‘and God shall cast him down with a sword in his country’

(empovery, I,19.865)

b. Dous schalt slitte þe skyn of þe torte up & don you shall slit the skin of the abscess up and down euene in þe myddes of þe torte.

even in the midst of the abscess

‘You shall slit the skin of the abscess up and down, even in the midst of the abscess’

(emojones, 115.294)

In all M2 and M3 examples showing the Vₙf…Prt pattern, the intervening element is a full or pronominal NP object, resembling the Present-Day English situation.

The overall picture of the position of the particle in (early) Middle English shows that particles could still be stranded by verb movement. This is especially the case in the M1/MX1 period, but also for the M2 and M3 period, albeit to a lesser extent. The preverbal particle pattern is marginal from early Middle English and preverbal particles in the M2 and M3 period often involve a topicalised particle.

Coordinate main clauses

In the Old English period, coordinate clauses sometimes behaved as main clauses in showing finite verb movement (stranding the particle), and sometimes they behaved as subordinate particle orders. In the M1 and MX1 period, the position of the particle in coordinate clauses corresponds to that in main clauses (cf. Table 5 and the discussion below). Coordinate clauses contain even fewer preverbal particles than main clauses and they predominantly show postverbal particle orders. This situation is continued into the M2 and M3 period.

Table 8a gives the figures for the position of the particle with respect to the finite verb in the M1, MX1, M2 and M3 period.
Table 8a: The position of the particle with respect to the finite verb in M1, MX1, M2 and M3 coordinate main clauses

<table>
<thead>
<tr>
<th>Coord</th>
<th>Main</th>
<th>Preverbal</th>
<th>Postverbal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>prt–Vf</td>
<td>prt…Vf</td>
<td>V_f–prt</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>M1</td>
<td>1</td>
<td>1.7</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>MX1</td>
<td>3</td>
<td>50.0</td>
<td>0.0</td>
<td>42.9</td>
</tr>
<tr>
<td>M2</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

As Table 8a shows, there is only 1 example in which the particle precedes the finite verb in the M1 period. After this period, there are no examples of coordinate clauses in which the particle precedes the finite verb. The example from the M1 period is from the West-Midlands *Ancrene Riwle* and is given in (57).

(57) gabbeð up breideð. chideð fikeleð.
 ‘(he) lies, reproaches, disputes, deceives’
 (cmancriv, II.148.2011)

In this example, the particle *up* ‘up’ immediately precedes the finite verb *breideð* ‘braid’. Note that the meaning of the particle *up* ‘up’ is bleached and non-transparent, roughly expressing the abstract meaning of completion. It is not evident from this example that the combination is an SCV and therefore the particle *up* ‘up’ is a particle, because of the absence of any of the morphosyntactic diagnostics introduced in Chapter 4 (i.e. intervening *ne*, *to*, modal, stranded preposition or non-VP material (as result of V2)). There are a few other examples containing this combination in which the particle follows the verb, but the semantics of the combination is transparent in these cases. An example is given in (58).

(58) & breid up ðe rode staf.
 ‘and lift up the rood’s staff’
 (cmancriv, II.214.3088)

In this example, the particle *up* ‘up’ is in immediate postverbal position and its meaning is transparent, expressing an upwards movement. The different semantics of the combination
in example (57) and the one in (58) suggests that two distinct combinations are involved here. Clark Hall (1960) lists the combination under two different entries: *upbredan* 'to reproach with, upbraid', cf. example (57), and *upabregdan/-abredan* 'to lift up, raise up, exalt', cf. example (58). Although there is no conclusive evidence from the examples we have, I suspect that the combination in (57) might be a lexicalised ICV, descending from the Old English SCV *upbredan* (cf. Clark Hall 1960). The combination in (58) is clearly a VPC, as shown by the fact that the particle follows the verb. Thus, the only M1 coordinate clause containing a particle that precedes a finite verb is dubious as it might not in fact contain a (separable) particle. If this is the case, then it is not a VPC and should not be included.

In the MX1 period, there are 3 out of a total of 7 examples (42.9%) in which the particle precedes the finite verb. These 3 examples are all from the same text, *The Trinity Homilies*, written in the East-Midlands dialect in the London area, (59).

(59) a. (Inclinauit celos et descendit) De (bend-3-SG-PERF heaven-masc-ACC-PL and descend-3-SG-PERF) The heuene abeh and *dun asteh.* heavens bowed (down) and down rose

'[Latin] The heavens he bowed (down) and descended’ (cmtrinit, 111.1502)

b. and ure helende brac þo þe irene herre and alto shiurede þe giaten and in *wende.* and our Saviour broke then the iron hinges and entirely shivered the gates and in went

‘and our Saviour then broke the iron hinges and shivered in pieces the gates and went in’ (cmtrinit, 113.1529)

c. Man mid is gele egged us and fondeð and *forð-teð* to idele þonke. and unnutte speche and iuele leads to idle thoughts and unprofitable speech and evil specche and mid wi3es bipecheð bute we þe warluker us speech and with wiles deceives but we the more warily defend ourselves

'The one with his charms provokes us and tempts us and leads us forth to idle thoughts and unprofitable speech and evil speech and with his wiles deceives us, but we the more warily defend ourselves’ (cmtrinit, 199.2747)

The example in (59a) is a direct translation from Latin. The Latin descendit ‘descend’ is translated into the English VPC *dun asteh* ‘down rose’ (i.e. *descend*). The VPC in *wende* ‘in went’ (i.e. *enters* in (59b) is not translated from a preceding Latin verb. The preverbal (‘OV’) particle strikingly contrasts with the VO syntax of the rest of the clause. In example
(59c), the VPC *forþ-þeð* ‘forth leads’ (i.e. *leads forth/on*) represents the Old English syntactic pattern, in that the particle precedes the verb.

As in the main clause environment, the VfPrt pattern predominates in coordinate clauses. It occurs in 38 out of a total of 66 coordinate clauses in the M1/MX1 period (57.6%), (60).

(60) a. & *wenden in*
and went in
‘and went in’
(cmancrīw, II.198.2840)

b. & *swipten of þerefter wið sweort hire heaued.*
and tossed off thereafter with sword her head
‘and after that tossed off her head with a sword’
(cmkathe, 48.457)

c. and *nom ut alle þa ilcan þe on þisse liue his bibode heolden.*
and took out all the same who in this life his command hold
‘and took out all those who hold his command in this life’
(cmlamhx1, 131.1307)

The example in (60a) could in principle involve verb movement, but since there are no other elements present there is no evidence for verb movement. In the example in (60b), the finite verb and the particle are followed by an adverb, *þerefter* ‘thereafter’, a prepositional phrase, *wið sweort* ‘with a sword’, and a direct object, *hire heaued* ‘her head’. This example shows a greater positional freedom than Present-Day English, which does not allow the order V–Prt–Adv–PP–NP: *

Larry lifted up nearly with one hand the paperclip*

(Larry nearly lifted up the paperclip with one hand). The example in (60c) involves a heavy object, consisting of a noun phrase and a relative clause. The heaviness of the object may have forced the particle to occur in immediate postverbal position (rather than after the object for example).

Examples from the M2 and M3 period are given in (61).

(61) a. & *couered vp þe gaderyng of Abyron.*
and covered up the gathering of Abyron
‘and (the earth) covered up Abyron’s gathering’
(cmearlps, 131.5704)

b. and *villen doun al kuic in-to helle.*
and fell down all quickly into hell
‘and (they) fell down quickly into hell’
(cmayenbi, 67.1259)
THE RISE OF THE POSTVERBAL PARTICLE

(61) c. and tok out þe soules þat hedden in heore lyf don his will.
 'and (he) took out the souls that had done his will during their lives'
 (cmedvern, 249.414)

d. but smyten of þe heuedes of euerychon;
 'but (they) cleaved off the heads of everyone'
 (cmbrut3, 99.2994)

The examples in (61a,b) are from the M2 period, the examples in (61c,d) are from the M3 period. In both periods, the Vf Prt pattern is predominant (despite the low numbers for the M2 period).

The pattern Vf…prt is of special importance as it often provides evidence for verb movement. In the M1/MX1 period, there is evidence for verb movement in 10 of the total of 22 coordinate clauses showing the Vf…prt pattern (45.5%). Some examples are given in (62).

(62) a. & culcheð al ut somed þæt þe attri heorte
 and vomits all out together that the poisonous heart
 sends to þe tunge.
 'and vomits out altogether that which the poisonous heart sends to the tongue'
 (emaneriw, II.70.784)

b. ant smat smeoliche a-dun þæt te dunt defde in.
 and struck quickly down that the blow knocked in.
 'and quickly struck down so that the blow knocked in'
 (cmnarga, 92.594)

c. & cweðe al scher up
 and spoke all clearly up
 'and spoke up to everyone clearly'
 (cmkathe, 32.213)

In all three examples in (62), an adverb intervenes between the finite verb and the particle, indicating that the verb has been fronted. In (62c), the direct object al ‘everyone’ also intervenes between the verb and the particle. The examples show that the particle can still be stranded by verb movement in coordinate clauses in the M1 period. Crucially, coordinate clauses appear to behave much more like main clauses than they did in the Old English period, when they either behaved as main clauses in showing verb movement or as subordinate clauses in not showing verb movement. In the M1 and MX1 period, coordinate clauses rarely show a preverbal particle pattern.
In the M2 period, there are 2 examples in which the particle follows a finite verb, but is separated from it by another element, (63).

(63) a. And *lad*hem *out* in a cloude of daie, and alle þe niȝt
and led them out in a cloud by day, and all the night
in lyȝtyng of fur.
in lighting of fire
‘and by day (he) led them out in a cloud and all during the night in the
lightning of fire’
(cmearlps, 94.4097)

b. & *lad*hem *out*,
and led them out
‘and (he) led them out’
(cmearlps, 94.4094)

The sequence of the finite verb and the particle is interrupted by a pronominal object in both examples in (63) and therefore do not provide evidence for verb movement.

In the M3 period, there are 10 coordinate clauses with the pattern Vf…Prt. Some examples are given in (64).

(64) a. and *drouȝ* hym *out* by þe heer,
and drew him out by the hair
‘and (they) drew him out by the hair’
(cmpolych, VI,87.638)

b. & *cast* it *doun* as god wolde
and cast it down as god wanted
‘and (it) cast it down ad God wanted’
(cmmandev, 55.1353)

In both examples in (64), the intervening element is a pronominal object, resembling the Present-Day English situation.

The findings for verb movement in coordinate clauses in the M1, M2 and M3 periods are presented in Table 9.

<table>
<thead>
<tr>
<th>Coord Main</th>
<th>Vf Prt</th>
<th>Vf…Prt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ VM</td>
<td>- VM</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>M2</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 9: Verb movement (VM) in coordinate main clauses in the M1, M2 and M3 periods
The figures show that evidence for particle stranding by verb movement is less robust in coordinate clauses than in main clauses (cf. Table 7).

Table 8b contains the figures for particles combining with non-finite verbs in coordinate clauses in the M1, MX1, M2 and M3 periods.

<table>
<thead>
<tr>
<th>Coord Main</th>
<th>Preverbal</th>
<th>Postverbal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>M1</td>
<td>0 0.0</td>
<td>1 33.3</td>
<td>1 33.3</td>
</tr>
<tr>
<td>MX1</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>M2</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>M3</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
</tbody>
</table>

Table 8b: The position of the particle with respect to the non-finite verb in M1, MX1, M2 and M3 coordinate main clauses

Table 8b shows that there is only 1 coordinate clause in which the particle precedes a non-finite verb in the M1, MX1, M2 and M3 periods. It is an example from the M1 period and is presented in (65).

(65)

Ach habe up hire nest iset ase brid of heouene but but have up her nest put as bird of heaven that is hire reste. is her resting place

is her resting place

‘but have put up her nest, which is her resting-place, as a young bird of heaven’

(cmancriw, II.105.1295)

The order Prt–Obj–V is striking, since it does not occur at all in Old English and this is the only example showing this order in Middle English. Closer investigation reveals that the example appears somewhat differently in another edition of the Ancrene Riwle. The example in (65) is from Dobson's (1972) edition (B.M. Cotton ms. Cleopatra C vi.). In Mack’s (1963) edition (Cotton ms. Titus D. XVIII), the example appears as in (66).
(66) Ah hauen on heh as briddes hauen of heuene iset hare nestes
but have on high as birds have of heaven put their nests
‘but have put their nests on high as birds of heaven do’
(Mack 1963: 36, ll.30-31)

In Mack’s edition, up does not appear at all, but appears as on heh ‘on high’, as shown in (66). This indicates that up in (65) does not form a VPC with the verb iset ‘put’, but functions as an adverb, indicating the high position of the nest. The example in (65) must be excluded from the data.

There are 2 examples from the MX1 period in which the particle immediately follows a non-finite verb, (67).

(67) a. Soðliche al swa ðu mihtest neoman þine a3en wepne
truly also easily you might take your own weapon
and smiten of þin a3en heaueð.
and cleave off your own head
‘Truly also easily you might take your own weapon and cleave off your own head’
(cmlambx1, 29.354)
b. and don on þe newe þe clenseð alle.
and put on the new who cleanses everything
‘and appointed the new one who cleanses everything’
(cmtrinit, 201.2787)

The pattern in the examples in (67) reflect basic word order: the verb of the VPC is non-finite and therefore cannot have moved. The pattern is also attested in M3 coordinate clauses. Some examples are given in (68).

(68) a. and was i-take in, and his ey3en i-put out, and his tonge i-kut of.
cut off
‘and (he) was captured and his eyes were put out and his tongue was cut off’
(cmpolych, VI,285.2093)
b. but þei ben all beten doun.
but they are all beaten down
‘but they are all beaten down’
(cmmandev, 71.1807)

The Vnf Prt pattern is relatively frequent in coordinate clauses in the M3 period. Finite and non-finite clauses taken together, it occurs in 20 out of 78 coordinate clauses (34.5%).
There are 2 examples from the M1 period in which the sequence of the non-finite verb and the particle is interrupted by another element. Both examples are from the Ancrene Riwle; they are given in (69).

(69) a. & let hit siten ane & Loken 3eorne abuten cleopie …
 and let it sit alone and look eagerly about saying
 ‘and let it sit alone and look eagerly about, saying: …’
 (cmancriw, II.170.2366)

b. Ach wulle turne me awei hwense 3e heoued toward me
 but want turn me away whence you lift towards me
 up over honden.
 up your hands
 ‘but want to turn me away from where you raise your hands towards me’
 (cmancriw, II.62.637)

In example (69a), the particle abuten ‘about’ is preceded by an adverb, 3eorne ‘eagerly’. In Present-Day English, it is not possible for adverbs like these to intervene between the verb and the particle (*Tess looked eagerly up). Only adverbs that modify the particle, such as right and straight, are allowed to intervene (Tess looked right up). Example (69b) represents a modern order, with the pronominal object me ‘me’ occurring in between the non-finite verb and the particle.

The figures for coordinate clauses presented above support the observation made earlier that particles may still be stranded by finite verb movement in M1/MX1 and later Middle English periods. With the exception of the M3 period, the number of coordinate main clauses containing a particle that combines with a non-finite verb is low, and they therefore do not provide much evidence for basic postverbal order.

Subordinate clauses

In Old English, particles predominantly appeared preverbally in subordinate clauses, because the role of verb movement in this environment was marginal. In the M1 and MX1 period, particles predominantly occur in postverbal position in subordinate clauses, is in line with the situation in main and coordinate main clauses.

As in Old English, particles may be stranded by finite verb movement in subordinate clauses throughout the Middle English period. The figures for the position of the particle with respect to the finite verb are presented in Table 10a.
Table 10a: The position of the particle with respect to the finite verb in M1, MX1, M2 and M3 subordinate clauses

Table 10a shows that the particle immediately precedes a finite verb in 22 subordinate clauses (out of 114 subordinate clauses with a finite verb: 19.3%) in the M1/MX1 period. This pattern occurs only twice in the M2 period, and is not attested at all in the M3 period. Examples from the M1/MX1 period are given in (70), the example from the M2 period is given in (71).

(70) a. and of ða blode ðe ðar ut3iede,
and of the blood that there out-went
‘and of the blood that came out there’
(cmvices1, 119.1471)
b. þæt is hire suster; & heo hit ut warpe.
that is her sister and she it out threw
‘that is her sister and she threw it out’
(cmawles, 168.34)
c. swo þat his apostles and muchel oðer folc mid eien
so that his apostles and many other people with eyes
bihielden hwu he upwende.
saw how he up-went
‘so that his apostles and many other people saw with their eyes how he ascended’
(cmtrinit, 23.291)
The pattern Prt…V f is not attested in the M1/MX1 and M3 periods. There is 1 subordinate clause from the M2 period that shows this pattern. It is given in (72).

(72) and na3t ne wot: þet out ne gep.
and not not know that out not goes
‘and doesn’t know that (he) doesn’t go out’

In the example in (72), the preverbal particle is separated from the finite verb by the negative marker ne ‘not’. The word order pattern follows the Old English SCV pattern in which particles are separated from the verb by a negative marker.

The immediately postverbal particle order (V–Prt) is predominant in (early) Middle English subordinate clauses, too, with the exception of the MX1 period. In this period, subordinate clauses have the immediately preverbal order with a finite verb (Prt V f) in 10 out of 18 clauses, and have only 7 examples with the immediately postverbal order with a finite verb (V f Prt). Some examples showing the V f Prt pattern are given in (73).

(73) a. þæt swich fulðe stopwatch in ani ancre earen.
that such filth spews out in any anchoress’s ears
‘that spews out such filth in any anchoress’s ears’
(bmancriw, II.66.707)

b. 3et of þe lutle banes þe flowð ut wið þe eoille;
yet of the little bones that flow out with the oil
flows other oil out
‘yet other oil flows out of the bones that flow out with the oil’
(bmkathe, 53.539)

The relatively high frequency of preverbal orders in texts from the MX1 period indicates that they adhere quite closely to the distribution of particles in Old English and in that sense may be called conservative.

As in texts from the M1 period, the V f Prt pattern predominates in subordinate clauses in texts from the M2 and M3 period as well. In the M2 period, In 12 out of 18 subordinate clauses containing a finite verb and a particle, the particle immediately follows the finite verb. Examples are given in (74).
(74) a. þet hit theape out be þe mouþe.
that it leaps out at the mouth
‘that it leaps out at the mouth’
(cmaweni, 27.427)
b. Ich am don oway as shadowe, when it boweþ doun.
I am done away as shadow, when it bows down
‘I am passed away like a shadow, when it bows down’
(cmearlps, 137.6012)

In the M3 period, the particle immediately follows the finite verb in 66 out of 76 subordinate clauses containing a finite verb and a particle, (75).

(75) a. & setten it on his heued so faste & so sore þat the
and put it on his head so firmly and so painfully that the
blood ran down be many places of his visage & of his neck
and of his shoulders
‘and (they) put it on his head so firmly and painfully that the blood ran down via many parts of his face and neck and shoulders’
(cmmandev, 8.142)
b. and whanne Acab 3ede doun to take possessioun of this vyner,
and when Acab went down to take possession of this vineyard
God bad Elye meete him,
God asked Eli to meet him
‘and when Acab went down to take possession of this vineyard, God asked Eli to meet him’
(cmcurvey, I,14.590)

Subordinate clauses in which the postverbal particle does not immediately follow the finite verb, but is separated from it by other elements, may provide evidence for verb movement. In the M1/MX1 period, the Vf…Prt pattern occurs in 26 out of 114 subordinate clauses with a finite verb and a particle. Examples are given in (76).

(76) a. & iteilede draken gris liche ase deoflen þe forswolheð
and tailed dragons horrible as devils which swallow
ham ihal & speoweð ham eft ut biuoren & bihinden
them whole and spew them out again before and behind
‘and dragons with tails, as horrible as devils, which swallow them whole and spew them out again before and behind’
(cmsawles, 171.76)
Both examples in (76) provide evidence for verb movement, since in both cases non-VP material intervenes between the verb and the particle. In (76a), the sequence of the finite verb and the particle is interrupted by the adverb eft ‘again’ and in (76b) the finite verb and the particle are separated by the negative adverb nawt ‘not’ and the adverb phrase wið all ‘with all’.

There are only 2 examples involving the Vf…Prt pattern in the M2 period, and it appears 10 times in M3 subordinate clauses. Examples from these periods are given in (77a) and (77b) respectively.

(77) a. þat he feld hem doun in wildernesse.

b. ne neuere man dide sithe the tyme of Noe saf a monk

The particle patterns in these examples resemble those of Present-Day English: the interrupting element is a pronominal object, (77a), or a nominal object, (77b).

The findings for verb movement in subordinate clauses in the M1, M2 and M3 period are summarised in Table 11.

<table>
<thead>
<tr>
<th>Sub</th>
<th>Vf Prt</th>
<th>Vf...Prt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ VM</td>
<td>− VM</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>M2</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>133</td>
</tr>
</tbody>
</table>

Table 11: Verb movement (VM) in subordinate clauses in the M1, M2 and M3 periods
These figures confirm Pintzuk’s (1991, 1999) claim that verb movement occurs in subordinate clauses too. Moreover, they show that verb movement has increased considerably in subordinate clauses since Old English. My figures for the O3 period, for example, show that there is evidence for verb movement in only 13 out of 622 subordinate clauses (2.1%).

The figures for the position of the particle with respect to the non-finite verb in M1, MX1, M2 and M3 subordinate clauses are given in Table 10b.

Table 10b shows that the particle precedes a non-finite verb in 14 subordinate clauses out of 85 subordinate clauses with a non-finite verb in the M1/MX1 period (16.5%). 12 of these have the pattern Prt-Vnf. Examples are presented in (78).

(78) a. ũat hie mihte nexxin and mealten and ut-sanden
 that they might soften and dissolve and out-send
 some tears
 ‘that they might soften and dissolve and send out some tears’
 (cmvices1, 145.1815)

 b. and he hit bad of acken. and hire bitechen.
 and he it ordered off cut and her entrust
 ‘and he ordered it to be cut off and entrusted it to her’
 (cmtrinit, 139.1901)

These examples still follow the Old English pattern, but as Table 10b shows, they are a minority in this earliest Middle English period already. It is striking that the preverbal pattern has become so marginal in subordinate clauses, since this environment is least
affected by verb movement. There is only 1 subordinate clause with the Prt V nf pattern in both the M2 and M3 period.

There is 1 example in which a preverbal particle is separated from a non-finite verb by other elements in the M1/MX1 period. It is given in (79).

(79) þat non godes word upp ne mai springen
that none of-God words up not can spring
'that none of God's words can spring up'
(cmves1, 69.778)

In the example in (79), the sequence of the particle and the non-finite verb is interrupted by the negative marker ne 'not' and the modal verb mai 'can', elements that could also intervene between particles and verbs in Old English.

As in all other clausal contexts, the most frequent pattern is that in which the particle immediately follows the non-finite verb (V nf Prt). This is the case in all periods under discussion, except in the MX1 period (cf. Table 10b). Some M1 examples are presented in (80).

(80) a. for þa þe king was in prisun, þa wenden þe eorles &
because the king was in prison, then supposed the earls and
te rice men þat he neure mare sculde cumen ut,
the rich men that he nevermore should come out
'because the king was in prison, the earls and the rich men supposed that he
should come out never again'
(cmpepteth, 59.577)

b. Forr Crist wass strang wiþþ hannd inoh To werrpenn
because Christ was strong with hand enough to cast
dun þe deofell,
down the devil
'because Christ was with strong enough hand to cast down the devil'
(cmorm, I,123.1058)

The example in (80b) is from the *Ormulum*, which is written in regular iambic verse lines. In this particular example, the particle dun 'down' alliterates with deofell 'devil'. Particle, being primary stressed elements, can move around quite freely in verse texts. Thus, the position of the particle may often be influenced by the needs of the verse text in question. Still, the availability of the immediate postverbal position after a non-finite verb shows that it is a grammatical possibility in the language of the time. We must however be careful not to draw any firm conclusions about basic word order from verse examples like these.

There are 10 subordinate clauses in which the particle immediately follows a non-finite verb in the M2 period. Some examples are given in (81).
In the M3 period, the Vₙf Prt pattern appears in 147 subordinate clauses. An example is given in (82).

(82) by entysynge of þe devel he made cutte of seint Denys his arme.

(83) a. & sæde heom ðat he uuolde iuen heom up Wincestre and said them that he wanted give them up Winchester 'and told them that he wanted to given up Winchester to them'

b. & rende ham up heterliche wið þe breost roten. and tore them up cruelly at the breast’s roots 'and tore them up cruelly at the roots of the breasts'

The patterns displayed in these examples resembles the Present-Day English distribution of VPCs. In both cases, a pronominal object intervenes between the non-finite verb and the particle. In contrast to Present-Day English, other elements besides objects could intervene between the verb and the particle in the early Middle English period. Examples of such elements are adverbs, negative elements, PPs.

There is 1 subordinate clause from the M2 period that shows the Vₙf…Prt pattern, (84), and 15 from the M3 period. Some examples from the M3 period are given in (85).
The rise of the postverbal particle

(84) Lord, if you have kept wickedness, Lord, who shall hold them up?

‘Lord, if you have kept wickedness, Lord, who shall hold them up?’

(85) a. And there let Julianus Apostata dig him up

‘and there Julianus Apostatus let (them) dig him up’

b. Jesus heard that they had put him out;

‘Jesus heard that they had put him out’

The situation in subordinate clauses in the M1/MX1 period with respect to the position of the particle is similar to that in main and coordinate main clauses: the postverbal particle pattern predominates. However, the subordinate environment does have relatively more preverbal particles than main and coordinate main clauses. This merely reflects the old situation in subordinate clauses, which involved more preverbal than postverbal orders because of the marginal role of verb movement in this environment. Closer examination of the finite verb figures (Table 10a) revealed that there is evidence for particle stranding in some V1…Prt cases in subordinate clauses. The relatively high frequency of the Vnf Prt pattern indicates that the postverbal particle position has become the basic one.

6.3.2.1 Verb movement

The position of Old English particles, the precursors of the Middle English particles, is often determined by verb movement, especially in main clauses, and to a lesser extent in coordinate main clauses and subordinate clauses. In clauses involving verb movement, the particle is stranded, and surfaces postverbally. As I have already shown in the previous sections, there is still evidence for particle stranding as a result of verb movement in the early Middle English period, in all clause types. Table 12 presents the verb movement figures for main and subordinate clauses in the M1, M2 and M3 period.
Table 12: Verb movement (VM) in main and subordinate clauses
in the M1, M2 and M3 periods

<table>
<thead>
<tr>
<th></th>
<th>Vf Prt</th>
<th></th>
<th>Vf...Prt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+VM</td>
<td>-VM</td>
<td>total</td>
<td>+VM</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>main</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>10</td>
<td>15.6</td>
<td>54</td>
<td>84.4</td>
</tr>
<tr>
<td>M2</td>
<td>17</td>
<td>38.6</td>
<td>27</td>
<td>61.4</td>
</tr>
<tr>
<td>M3</td>
<td>28</td>
<td>17.9</td>
<td>128</td>
<td>82.1</td>
</tr>
<tr>
<td>total</td>
<td>55</td>
<td>20.8</td>
<td>209</td>
<td>79.2</td>
</tr>
<tr>
<td>subordinate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0.0</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>M2</td>
<td>0</td>
<td>0.0</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
<td>0.0</td>
<td>66</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0.0</td>
<td>133</td>
<td>100</td>
</tr>
</tbody>
</table>

The evidence for verb movement is most robust in examples involving the $V_{f...Prt}$ pattern: the particle has been stranded by verb movement in 91 out of a total of 160 $V_{f...Prt}$ clauses (56.9%). There is more evidence for verb movement in $V_{f...Prt}$ clauses in the M1 period (64.1% VM) than in the M2 and M3 period (36.4% VM and 49.1% VM respectively), which is expected given the overall decline of verb movement in the Middle English period (see for example Fischer et al. 2000: 129–137).

Surface evidence for particle stranding as a result of verb movement is only available in examples involving the $V_{f...Prt}$ pattern. In examples showing the V_{f} Prt pattern, there is no way to tell whether the particle has actually been stranded or has perhaps moved along with the verb. We know for certain that the verb has moved, however, because the verb in question is imperative, and imperatives are believed to involve verb movement to the highest functional projection C. In Chapter 7 (see also Chapter 5), I will argue that the V_{f} Prt pattern is the result of a derivation in which the particle has moved along with the finite verb. Evidence for this claim comes from examples in which the entire VPC, i.e. verb and particle, have been inverted with the subject, as in the following examples, 1 from the *Trinity Homilies* (MX1 period) and 2 from the *Ayenbite of Inwyt* (M2 period).

(86) a. at these five gates the worker of death enters.
 at these five gates cometh death’s worker
 ‘The worker of death enters at these five gates’
 (cmtrinit, 191.2650)
b. Danne of þe mouþe of þe enuious comeþ out þri manere
then of the mouth of the envious come out three kinds
of words venomous.
‘Then three kinds of venomous words come out of the mouths of the
envious’
(cmayenbi, 28.428)

Of þo he3e roche comeþ doun þe welle of loue ine herte
of the high rock comes down the fountain of love in heart
þet is wel y-clenzed uor þe loue of þe wordle.
that is well cleansed for the love of the world.
‘The fountain of love comes down from the high rock in the heart that is
well-cleansed for the love of the world’
(cmayenbi, 251.2293)

In each of these three examples, the VPC is preceded by a PP in topic position and is
followed by the subject. In these examples, then, there is clear evidence that the particle has
not been stranded. In other VfPrt examples involving verb movement, there is no
conclusive evidence for particle stranding.

6.3.3 Study 2: Language contact and the position of early Middle English
particles

In this section I will investigate the role of language contact on the sudden rise of the
(immediately) postverbal particle pattern. Following the Viking settlements at the end of the
Old English period, English was in close contact with Old Norse, which like Old English
had a system of particles. I will present the results of a corpus study which focuses on
differences in particle position in texts from the South-Western parts of England and those
from the Old Norse-influenced North-Eastern parts.

The relatively sudden rise of the (immediately) postverbal particle order not only raises
the question of how this order came about, but also how it became so frequent so quickly.
The order only occurred as a surface pattern in Old English, resulting from finite verb
movement. The first case study showed that there is still robust evidence for particle
stranding by verb movement in early Middle English, but there is no way of telling whether
verb movement is involved in those cases where the particle is in immediately postverbal
position. Derived or underived, in early Middle English, the postverbal particle order has
become established and postverbal particles predominantly immediately follow the verb.
The change from preverbal to postverbal particles is often associated with the loss of OV
word orders that started in the Old English period and was completed near the end of the
Middle English period. Though it is beyond doubt that the shift to postverbal particles was
influenced by the loss of OV orders, the speed with which the change took place suggests
that this cannot have been the only factor. Note that the interwovenness with OV/VO, in
the sense that the particle shifted position, argues for the analysis proposed in Chapters 4 and 5, in which particles are syntactically autonomous elements.

One possibility is that the postverbal particle pattern was the result of a reanalysis of an Old English pattern. In Old English, finite verb movement often resulted in particles surfacing postverbally (in main clauses and to a lesser extent also in subordinate clauses). The postverbal particle pattern may have become reanalysed as an underlying structure, perhaps as a result of imperfect learning. Of course, such a scenario does not explain why such a reanalysis should have occurred or why the reanalysis happened on such a large scale. More importantly, it is unlikely for the reanalysis to have occurred given that there was robust evidence for verb movement in early Middle English, leaving no room for a reanalysis along the lines sketched above.

In the absence of obvious internal factors leading to the rise of postverbal particles (leaving aside the loss of OV orders), it is worth investigating the influence of external factors, specifically the role of the language contact situation with Old Norse in the tenth and eleventh centuries A.D. Several authors have proposed that differences between North-Eastern and South-Western Middle English are due to Scandinavian influence (Kroch and Taylor 1997; Kroch 2001; Trips 2002). Kroch and Taylor (1997), for example, observe that there is a difference in the position of the finite verb between Northern Middle English dialects and Southern Middle English dialects. The latter are more conservative and tend to display verb-second like Old English, showing a contrast between nominal and pronominal subjects with respect to the finite verb. This contrast is not present in Northern Middle English dialects. Kroch and Taylor (1997) attribute this difference to the language contact situation between Scandinavian and North-Eastern Middle English dialects at the end of the Old English period. More generally, language contact situations typically give rise to unstable linguistic environments, in which change is likely.

6.3.3.1 Contact-induced language change

It is well-known that language contact gives rise to language change (e.g. Thomason 2001; Kroch 2001). Several authors (Kroch and Taylor 1997, 2000a; Kroch 2001; Trips 2002 among others) have shown that language contact may give rise to syntactic change. Kroch (2001), for example, comments on language contact as a possible cause of language change, which he defines as “a failure in the transmission of linguistic features” (Kroch 2001: 699). He notes that language contact may change the character of the evidence available to the learner, which can in turn cause failure of transmission. At the same time, Kroch notes that “the abstract possibility of imperfect transmission tells little about what changes or how much change to expect” (Kroch 2001: 702). What is important for us here is that the language contact with Old Norse may in principle have had syntactic influence. Given the relatively short time period in which the change to postverbal particle took place I will explore the possibility of language contact. Kroch and Taylor (2000a) suggest that language contact plays a role in the change in the position of the finite verb, and Trips (2002) adduces the language contact factor in the change from OV to VO. It is conceivable that the position of the particle was influenced by the language contact situation as well.
Contact-induced change is often believed to be a matter of substrate effects (Thomason 2001), by which a language formerly spoken by a group of people influences the acquisition of a language spoken later. The term 'acquisition' comprises first language acquisition by children as well as second language acquisition by children and adults. The resulting imperfect learning causes language change. For the English case under scrutiny here, this means that former speakers of Old Norse learned English imperfectly during the period of close everyday contact between Old English and Old Norse. Beside this route of contact-induced change, it is also conceivable that an unstable linguistic community gives rise to innovation. The case study to be discussed later on thus departs from the assumption that the change in the position of the particle could theoretically be an instance of imperfect learning or of an innovative structure that arose in a time of linguistic instability.

The idea that language contact is involved in the emergence of postverbal particles is supported by evidence from Dutch creoles. Bruyn (2001a,b) notes that particles are immediately postverbal in the Dutch-based creoles Berbice Dutch and Negerhollands. This is unexpected since Dutch has preverbal particles. Bruyn’s material shows that the postverbal position of particles in Dutch-based creoles could be due to influence of English and English-based creoles, which invariably have postverbal particles. This is illustrated by the examples in (87). The examples in (87a) are from Bruyn (2001a: 3), the example in (87b) is from Bruyn (2001b: 5).

(87)
\[\text{a. Berbice Dutch} \quad \text{maklara} \quad \text{‘prepare, get ready’ (Dutch klaarmaken ‘make ready’)} \]
\[\text{Negerhollands} \quad \text{rapō} \quad \text{‘take, gather, pick up’ (Dutch opraapen ‘pick up’) } \]
\[\text{b. Virgin Islands English Creole} \quad \text{grate up} \quad \text{‘scratch’} \]

Verbs with postverbal particles are marginal in Berbice Dutch, whereas they are frequent in Negerhollands. This difference can possibly be attributed to stronger influence from English and English creoles in the case of Negerhollands (Bruyn 2001a: 5).

Bruyn’s studies show that speakers can resort to placing their particles postverbally when in contact with a language that does so, even if this implies a radical change with respect to the input. It is conceivable that adults (L2 learners) start to place their particles in postverbal position more often as a result of contact with a ‘postverbal particle-language’. The intensive language contact situation with Old Norse may have led to a similar result, although Northern Old English may already have been more VO-like.

6.3.3.2 Language contact with Old Norse in the tenth and eleventh centuries A.D.

The sacking of Lindisfarne by the Vikings in 793 A.D. marked the beginning of a period of Viking raids and later Viking settlements in the Northern and Eastern parts of England. Townend (2002) remarks that Anglo-Saxon England in the tenth and eleventh centuries could be “regarded as Anglo-Scandinavian England, with the two peoples, similar but distinctive, in close and persistent contact” (Townend 2002: 2). Assuming there was a stage of bilingualism, the influence that Old Norse had on English must have been considerable. Apart from the place names the contact resulted in a large number of words that go back to
Scandinavian origin, examples are husband, egg, fellow. The intensity of the contact is especially apparent from some grammatical elements that were borrowed from Old Norse. These are the personal pronouns they, their and them (replacing the English pronouns his, her(s)/his/their and him/tony) and the third person singular –th ending (replacing the English –eth ending). See Kroch and Taylor (2000a) and Trips (2002) for more hypotheses on Scandinavian influence.

Old Norse was a VO language, as noted by Faarlund (2004), who states that “the most common order, which should also be taken as basic, is head-complement” (Faarlund 2004: 160). Like the other Germanic languages, Old Norse had a set of particles expressing a direction or location (Faarlund 2004: 108). Some of the Old Norse particles, especially those which denote ‘general direction’, closely resemble Old English particles, (88) (Old Norse examples from Faarlund 2004: 108).

Old English: inn(e) ‘in’, ut ‘out’, up(e) ‘up’, niðer ‘down’, fram ‘from, forth, out, away’

The Old English particle of ‘off’ is also found in Old Norse, which has af ‘off’, as indicated by the examples in (89) (from Faarlund 2004: 164, (125c) and 2004: 148, (73c)).

(89) a. hogg þú af tvær alnar hverju stótrtré
 cut.IMP.2S you.N off two els.A each big-tree.D
 ‘Cut two els off every main beam’ (Laxd 228.4)

b. þú tak þú af tvá hluti
 then take.IMP.2S you.N off two parts.A
 ‘Then withdraw two parts’ (Kgs 7.1)

Old Norse particles differed from their Old English counterparts in several respects. Denison (1981: 278), basing himself on Heuser (1964), points out that the meaning of Old Norse particles was usually idiomatic (i.e. non-transparent), which contrasts with the predominantly transparent meaning of Old English particles. Denison (1981, 1985) argues that Old Norse is the source for some non-transparent meanings that first appear in early Middle English. Denison argues that gyfen ‘give’, in the combination gyfen up ‘give up’ (which first appears in the Peterborough Chronicle), could be a loan translation from Old Norse gefa ‘give’, and that the completive meaning of up could be a semantic loan from Old Norse (Denison 1985: 54). The following Old Norse example (from Faarlund 2004: 148, his example (73b)) contains the verb-particle combination ‘give up’ and it has a non-transparent meaning, supporting Denison’s argument.12

11 Laxd= Laxdœla saga (Iceland, ms. date 1330), Kgs= Konungs skuggsjá (Norway, ms. date 1275).
12 Nj= Brenna-Njáls saga (Njála) (Iceland, ms. date 1300).
Following Heusler (1964), Denison (1981: 277) notes that the common position for Old Norse particles is the postverbal position, except when the verb is non-finite. Faarlund (2004: 163) notes that the preverbal position is especially common with non-finite verbs. Some examples are given in (91) (from Faarlund 2004: 163, his examples (123a,b)).

(91) a. barnit er út borit
 child.N-the is out carried.NEUN
 ‘The child has been exposed’ (Gunnl 7.9)

 b. hvé nær skaltu upp taka slíkan ágætisgrip?
 when shall.2s-you.N up take such glory-thing.n
 ‘When are you going to wear such a splendid piece?’ (Laxd 146.8)

Faarlund (2004: 164) points out that no other element may intervene between the preverbal particle and the non-finite verb, which is different from the situation in Old English, where this is possible. Faarlund further points out that Old Norse particles “often form a close unit with the verb” (Faarlund 2004: 147), presumably referring to the semantics of the combination.

Denison (basing himself on Heusler 1964) also notes that the verb–particle–object order is more common for idiomatic VPCs which predominate in Old Norse. It is precisely this order which becomes dominant after the Old English period. Conceivably, the Old Norse ‘particle system’ influenced the Old English one during the period of contact. The linguistic instability that arose as a result of the language contact situation may have created a momentum for the head analysis of particles, which was already available on a small scale in Old English. Speakers were prompted to choose the more economical option (i.e. the head analysis) by immediately postverbal particles in their linguistic environment, which provided evidence for the head analysis. Apart from the often postverbal position of Old Norse particles, the meaning of Old Norse particles was often idiomatic, which obscured the evidence for phrasal status. Another possibility is that the postverbal particle pattern arose as a new construction, created by language speakers in a period of linguistic instability.

6.3.3.3 Results of the corpus study

In this section, I will present the results of a study in which I made a comparison between texts from the North-East (under Viking influence in the Old English period) and texts from the South-West of England. If the language contact situation with Old Norse influenced the emergence of postverbal particles and the verb–particle–object order in

13 Gunnl= Gunnlaugs saga ormstungu (Iceland, ms. date 1300).
particular, we expect to find more verb–particle–object orders in texts from the Danelaw area than in texts from the area outside the scope of Scandinavian influence.

The early Middle English data are collected from texts from the M1 and M2 period of the PPCME2 (see Appendix II). Because there is only a limited number of sources available for the period under investigation, I have also included two versions of the *Cursor Mundi* in my study: a Northern version (Cotton manuscript; Morris 1874) and the only Southern version (Arundel manuscript; Horrall 1978).

Table 13 presents the figures for the position of the particle in North-Eastern and South-Western texts from the M1 (1150-1250) period.14 I only give the figures for subordinate clauses in order to rule out influence of verb movement as much as possible.

<table>
<thead>
<tr>
<th>M1 Sub</th>
<th>Preverbal</th>
<th>Postverbal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt-V</td>
<td>prt…V</td>
<td>V-prt</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>South-West</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kentho</td>
<td>3</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>North-East</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peterb</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>orm</td>
<td>4</td>
<td>6.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 13: The position of the particle in subclauses from M1 South-Western and North-Eastern texts

As is clear from Table 13, South-Western and North-Eastern data from the M1 period are scarce. There is only one text from the South-Western area, and two from the North-Eastern area, but one of those (the *Ormulum*) is written in verse and requires careful treatment. Despite the small numbers, the figures are striking. Of the three attested particles in the *Kentish Homilies* excerpt included in the PPCME2, all three occur in immediate preverbal position. By contrast, all 8 particles found in the *Peterborough Chronicle* excerpt occur in postverbal position and so does the vast majority of particles found in the *Ormulum* excerpt. The particle is preverbal in only 4 cases. It is not surprising that preverbal particle orders are attested in the *Ormulum*; since it is a verse text and since particles carry primary stress, particles may be placed in preverbal position whenever it is required by the demands of rhyme. The poet, Orm, in fact admits to adjusting his text in such a way that it meets the demands of rhyme, (92).

14 The abbreviations in Table 13 read as follows: kentho = *Kentish Homilies*, peterb = *Peterborough Chronicle*, orm = *Ormulum*.
The Rise of the Postverbal Particle

(92) Shollde Icc well ofte nede
Amang Godspelless wordess don
Min word, min ferrs to fillenn
'I often have to add my word amongst those of God to complete my verse'
(Bennett and Smithers 1968: 174)

The 4 examples containing a preverbal particle are given in (93).

(93) a. Datt mankinn sholld mu3henn wel / Upp cumenn inntill
that mankind should can well up come until
heoffne, / Datt heoffness here mihhteswa / Durrh hall3he
heaven that heaven's army can so through holy
sawless waxenn,
souls grow
'That mankind should well be able to ascend to heaven, that heaven's army
can grow through holy souls in this way'
(cmorm, I,136.1139)
b. Datt tu swa lange dwellesst her / Swa ferr fra Godess
that you so long abide here so far from God's
riche, / & 3eornesst tatt tu mote sket / Uppcumenn
kingdom and yearn that you may soon up-come
inntill heoffne,
until heaven
'that you abide here so long, so far from God's kingdom, and yearn that you
may soon ascend to heaven'
(cmorm, I,42.432)
c. & ec forr þatt he wollde swa / Durrh hiss þeowwdom
and also because he wanted so through his service
utlesenn / Off deofell þeowwdom alle þa, / Datt wel himm
out-release of devil's service all those that well
sholldenn foll3henn.
should follow
'and also because he so wanted to free through his service of devil's service
all those that should follow him well'
(cmorm, I,124.1072)
d. Datt mankinn sholld nevenn ben / Utlesedd fra þe
that mankind should newly be out-released from the
decoffell,
devil
'that mankind should be freed from the devil again'
(cmorm, I,25.306)
Examples (93a,b) both contain the VPC *uppamenn* 'to raise up, ascend'. In both examples, the particle *upp* 'up' occurs at the beginning of a new verse line and receives stress. In (93c), the particle *ut* 'out' in the SCV *utlesenn* 'release' receives stress (*Dhorr hisi *pauudhun* *utlesenn*). The same is true in (93d), where *ut* 'out' in *utlesedd* 'released' again receives the primary stress (*Utlesedd* *fra* *þe* *deofell*).

In sum, the figures present a clear difference in particle position between South-Western texts and North-Eastern texts in the M1 period. The South-Western text has preverbal particles only. In the North-Eastern texts, the postverbal patterns absolutely predominate. The only 4 preverbal particles in North-Eastern texts are from the *Ormulum* and can be ascribed to the strict iambic metre of this text. Of the postverbal patterns, the V–Prt pattern is most frequent.

Table 14 presents the figures for the position of the particle in North-Eastern and South-Western texts from the M2 period (1250-1350). Again, I only give the figures for subordinate clauses.

<table>
<thead>
<tr>
<th>M2 Sub</th>
<th>Preverbal</th>
<th>Postverbal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prt–V</td>
<td>prt...V</td>
<td>total</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>South-West</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kentse</td>
<td>1</td>
<td>33.3</td>
<td>0</td>
</tr>
<tr>
<td>ayenbi</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>cumuA</td>
<td>7</td>
<td>29.2</td>
<td>4</td>
</tr>
<tr>
<td>North-East</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cumuC</td>
<td>4</td>
<td>23.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 14: The position of the particle in M2 subordinate clauses

The PPCME2 corpus does not contain any texts from the M2 period that are written in the North-Eastern parts of England. For this reason, I have added the Cotton ms. of the *Cursor Mundi* to my study, of which I searched the first 5000 lines. For comparison, I have also studied the first 5000 lines of the Arundel ms. of the *Cursor Mundi*, which is written in the Southern dialect.16

15 The abbreviations in Table 14 read as follows: kentse = Kentish Sermons, ayenbi = Ayenbite of Inwyt, cumuA = *Cursor Mundi* Arundel ms., cumuC = *Cursor Mundi* Cotton ms.
16 In Elenbaas (2006a), I also included Richard Rolle’s *Epistles* and Richard Rolle’s *Prose Treatises* as Northern texts, because there are no other Northern M2 texts available in the PPCME2 corpus. Both these texts are classified as M24: their composition date lies around 1348/9 and their manuscript date around 1450. I have chosen not to include the particle figures of these texts in Table 14, because the
As Table 14 shows, the picture in the M2 period is much more diffuse than in the M1 period. In the M2 period, postverbal particles outnumber preverbal particles in both South-Western and North-Eastern texts. The *Ayenbite of Inwyt* has only one preverbal particle, while it contains 13 postverbal particles. The text is written in the late M2 period, around 1340, when preverbal particles had become very rare. In the Southern Arundel ms. of the *Cursor Mundi*, the numbers for preverbal and postverbal particles are almost equal (11 preverbal, 13 postverbal). The manuscript is dated around 1400, which in fact falls outside the M2 period as classified in the PPCME2 corpus. This late date makes the occurrence of preverbal particles all the more interesting. In many cases, however, the preverbal position of the particle can be attributed to rhyme. According to the OED, Middle English instances of preverbal particles “were especially employed by metrical writers as facilitating the exigencies of rhythm and rhyme, and it is chiefly in metrical compositions that they are found.” (OED online entry for *out*, prefix). Consider the examples in (95).

(95) a. þou3e man my3te neuer so myche welde / So faste hit draweþ to doun helde
 though man can never so much wield so firm it draws to down bend
 ‘though man can never wield so much, so firm it draws to bend down’
 (cumuA, 3111/2)

b. For monkynde as seiþ he boke / But durste he neuer wiþ y3e vp loke
 because mankind as says the book but dared he never with eye
 ‘For mankind, as the book says, but he never dared to look up with (his) eye’
 (cumuA, 1819/20)

c. A beest he seide my sone haþ rent / Allas þat euer I hym out
 a beast he said my son has torn alas that ever I him out
 sent
 ‘He said a beast has torn my son; alas that I ever sent him out’
 (cumuA, 4211/2)

In the examples in (95), the verb of the VPC occurs in sentence-final position, after the particle, in order to rhyme with the last word of the previous or next line. The preverbal position of the particle in these examples may therefore be attributed to rhyme.

The figures for the Northern Cotton manuscript of the *Cursor Mundi* present a similar diffuse picture. The preverbal pattern even outnumbers the postverbal particle order slightly (9 preverbal against 8 postverbal). Like the preverbal examples from the Arundel manuscript, the preverbal pattern often seems to be forced by rhyme, (96).

word order patterns in these texts are very modern and therefore seem to reflect the syntax of the manuscript date rather than that of the composition date.
(96) a. Quen þat þai fulli forth war gan / ... cald onan
when that they completely forth were gone ... cold at once
‘When they had gone forth completely ... cold at once’
(cumuC, 4885/6)

b. þof man moght neuer sa mikel weild / Sua fast it
draus to dun heild
draws to down bend
‘though man can never wield so much, so firm it draws to bend down’
(cumuC, 3111/2)

In (96a), the preverbal particle *forth* is separated from the verb *gan* ‘gone’ by the auxiliary *war* ‘were’. This word order seems heavily influenced by the demands of the iambic tetrametre. The particle *forth* carries primary stress and fits the metre when it occurs before the auxiliary and the verb, (97a), but would not have carried primary stress had it been placed in the position immediately preceding the verb, (97b).

(97) a. Quen þat þai fulli forth war gan
b. Quen þat þai fulli war forth gan

The (immediately) postverbal position is unavailable for the particle *forth* because rhyming demands the verb *gan* to be in line-final position to rhyme with the last word of the following line, *onan* ‘at once’.

The example in (96b) corresponds to the example from the Southern Arundel manuscript in (97a). It shows the same word order as the Southern example, with the particle *dun* ‘down’ immediately preceding the verb *heild* ‘bend’. Rhyme requires the verb *heild* ‘bend’ to be in line-final position, establishing a rhyming scheme with the last word of the preceding line, *weild* ‘wield’.

A comparison of the number of preverbal particles in the Cotton manuscript and the Arundel manuscript reveals that there are 5 examples with *prt-V* order in the Arundel manuscript and only 2 such examples in the Cotton manuscript. The two manuscripts may differ with respect to word order, but also with respect to choice of words: where one manuscript has a particle, the other manuscript may not. This is why the numbers for both manuscripts are not identical.

The paucity of the data makes it difficult to draw any firm conclusions about the influence of the language contact situation with Old Norse on the position of the particle. While the figures for the M1 period (cf. Table 13) show a dialect difference with respect to particle position, the figures for the M2 period fail to do so. This does not necessarily mean that there was no dialect difference in the M2 period, because the results (just as those for the M1 period) may be influenced by the paucity of the data. At the same time, the observed dialect difference in the M1 period need not reflect the influence of the language contact situation with Old Norse. Given what we know about the effects of language contact and the ‘particle system’ of Old Norse, however, an effect of the language contact
situation with Old Norse on the rise of postverbal particles in the Northern dialects is likely. Taking into account the cautions raised above, the figures for the M1 period hint at such an effect. In this period, postverbal particles are more frequent in North-Eastern texts than in South-Western texts. This could suggest that the sharp rise of the postverbal particle patterns was further accelerated by the contact with Old Norse.

6.4 Conclusions and outlook

This chapter investigated the rise of postverbal particles in the early Middle English period and other changes that took place in the particle system. The number of prefixes, which had already decreased considerably since Old English, decreased further and eventually they were lost altogether (with the exception of some lexicalised cases). The Old English particles, on the other hand, continue to appear in the language, but their position with respect to the verb has changed dramatically. Their surface position is no longer predominantly preverbal, instead the postverbal position has become predominant from the earliest Middle English onward. The corpus study into the position of the particle with respect to finite and non-finite verbs shows that particles can still be stranded by finite verb movement in the early Middle English period.

A second case study was devoted to investigating the strikingly high frequency of the immediately postverbal particle order, V–Prt, from the early Middle English period onward. The case study compares early Middle English South-Western texts with early Middle English North-Eastern texts with respect to the position of the particle. The hypothesis is that the existence of postverbal particles in Old Norse and the close language contact situation with Old Norse in the Northern parts of England at the end of the Old English period may have led to more postverbal particles in North-Eastern texts compared to South-Western texts. Figures for the M1 period show that postverbal particles are more frequent in texts from the North-East, suggesting possible influence of the language contact situation with Old Norse. The results of the corpus study must be treated with caution, because of the paucity of the relevant dialect data for the early Middle English period. The results for the M2 period do not reveal a difference in frequency of postverbal particles between texts from the two different dialect areas, but this is no proof that the language contact with Old Norse had no role to play. At the same time, no firm conclusions can be drawn about the effect of the language contact situation with Old Norse for this period.

Besides changes and developments in the syntax of particles, there are also semantic developments in the particle system in (early) Middle English. In Old English, the meaning of the particles was predominantly transparent (cf. Chapter 4, Hiltunen 1983). The first attestations of VPCs with a non-transparent meaning appear in the early Middle English period. This is the start of a development which has resulted in the huge number of idiomatic VPCs in Present-Day English. It is suggested that the rise of non-transparent meanings fed the development in which early Middle English particles increasingly come to be analysed as heads. The early Middle English period thus shows the beginnings of a development which has yielded the verb-particle combination as we know it today. The
particle’s syntactic dependence has increased and so has the unit-like behaviour of the verb and the particle.
7 A formal syntactic analysis of the Early Middle English verb-particle combination

The transition from Old to Middle English witnessed a sharp shift to postverbal particles as well as the first instances of VPCs with a non-transparent meaning. Another important development concerns the syntactic status of particles. In Chapter 4, I argued that the behaviour and characteristics of Old English particles warrants an analysis in which they are fully independent syntactically and should therefore be treated as phrases (XPs). The detailed discussion of the behaviour and properties of (early) Middle English particles in Chapter 6 showed that the evidence for phrasal status decreases in the Middle English period and that particles may increasingly be analysed as forming a unit with the verb. I will analyse this in terms of a grammaticalisation development which interacts with the Structural Economy Principle: a decrease in evidence for phrasal status results in the choice for the more economical head option (cf. van Gelderen 2004 for a similar proposal).

In this chapter, I will present a formal analysis of the Middle English verb–particle combination, with special emphasis on the change-over from preverbal to postverbal particles in the transition from Old to Middle English. The syntactic structure I adopt is the same lexical decomposition analysis I adopt for Present-Day English (Chapter 3) and Old English (Chapter 5). In the analysis I will propose, the postverbal word orders are derived in the same way as the surface postverbal patterns in Old English. The difference with Old English is that certain grammatical options were lost in the course of the Middle English period. Specifically, the (Old English) option of moving larger constituents, which derived OV word orders, disappears as a result of reanalysis (cf. Biberauer and Roberts 2005). Moreover, particles increasingly form a unit with the verb as a result of the fact that they are no longer always analysed as phrases. This increase in syntactic dependence means that particles are no longer always stranded in the VP, but are often carried along with the verb, leaving the VP.

The organisation of this chapter is as follows. §7.1 provides a discussion of existing analyses of the shift to postverbal particles. In §7.2, I propose a lexical decomposition analysis of early Middle English VPCs, following the proposal for Old English SCVs (Chapter 5) and Present-Day English VPCs (Chapter 3). §7.3 presents an analysis of the shift to postverbal particles in the transition from Old to Middle English. The conclusions of this chapter are presented in §7.4.

7.1 Analyses of the shift to postverbal particles in the literature

7.1.1 Fischer et al. (2000)

Fischer et al. (2000) pursue an analysis in which the underlying order is always VO (universal base hypothesis). Old English OV orders are derived by overt movement of objects to the left of the verb. Thus, preverbal particle orders are the result of overt movement of particles to a position to the left of the verb (cf. the discussion in Chapter 5).
Consequently, the change-over to postverbal particles in the transition to Middle English is analysed as the loss of overt movement of particles.

Fischer et al. (2000) do not provide a fully-fledged analysis, but indicate how the facts may be accounted for in a VO-based analysis. For Old English SCVs, they adopt Zwart’s (1993) secondary predicate analysis of Dutch separable prefixes (cf. Chapter 5). They propose that Old English particles, being secondary predicates, obligatorily move to the PredP domain to check a predicate feature. Fischer et al. (2000: 199) suggest checking of the predicate feature can be achieved in two ways. The first option is to move the entire small clause (AgrP, which contains the object and the particle) to SpecPredP, (1b). The second option involves head-movement of the particle to Pred, (1c).

(1) a. & hi manega deofolseocnessa utadrifon,
 and they many demoniacal possessions out-drove
 ‘and they cast out many devils’
 (cognosep, Mk [WSCp]:6.13.2572)

 b. $[\text{VP} \text{adrifon} \text{AgrP manega deofolseocnessa Agr [vp ut]}]$
 $\text{MERGE PredP, MOVE AgrP ▲}$

 $[\text{PredP [AgrP manega deofolseocnessa Agr [vp ut]]}]
 [\text{VP tAgrP adrifon tAgrP}]$

 c. $[\text{VP adrifon [AgrP manega deofolseocnessa Agr [vp ut]}]$
 $\text{MERGE PredP, MOVE P ▲}$

 $[\text{PredP [P+Agr+V+Pred ut adrifon]}]
 [\text{VP tP+Agr+V [AgrP manega deofolseocnessa }]
 \text{tP+Agr [vp t]}]$]
 $\text{MERGE AgrOP, MOVE manega deofolseocnessa ▲}$

 $[\text{AgrOP manega deofolseocnessa [PredP [P+Agr+V+Pred ut adrifon]}]
 [\text{VP tP+Agr+V }]
 \text{[AgrP tDP tP+Agr [PP tP}}}]]$

The derivation in (1b) involves movement of the entire small clause (AgrP) to SpecPredP. The object presumably has to move to the AgrOP domain on top of the PredP domain for checking reasons. The second derivation suggested by Fischer et al., (1c), involves head-movement of the particle at ’out’ to Pred, where it checks the predicate feature. Though not discussed by Fischer et al., the nature of head-movement requires the particle to move to Pred via Agr and V. While Agr is an empty position, V is occupied by the verb and the particle has to incorporate into the verb by left-adjoining to it. The last step in the head-movement operation therefore involves movement of the particle and verb complex, created by incorporation. The object manega deofolseocnessa ‘many devils’ moves to SpecAgrOP for checking reasons.

Fischer et al. (2000: 206) analyse the shift to postverbal particles and the loss of OV orders as the result of a change in checking requirements. They propose that overt checking is no longer needed in Middle English, which means that the particle and the object can stay in-situ in overt syntax. Both the particle and the object surface postverbally as a result. This is illustrated in (2b).
(2) a. Ha hackede of his heaued

They cleaved off his head

"They cleaved off his head"

(cmancriw, II.220.3190)
b. \[
\begin{align*}
\text{ VP } & \text{hackede} \\
\text{ AgrP } & \text{his heaued} \\
\text{ Agr } & \text{ of} \\
\end{align*}
\]

MERGE PredP

\[
\begin{align*}
\text{ PredP } & \text{Pred} \\
\text{ VP } & \text{hackede} \\
\text{ AgrP } & \text{his heaued} \\
\text{ Agr } & \text{ of} \\
\end{align*}
\]

MERGE AgrOP

As shown by the derivation in (2b), the particle of ‘off’ and the object his heaued ‘his head’ stay in their base-generated position. The order V–Prt–Obj is derived by overt movement of the verb to a higher functional projection and by covert movement of the particle and the object (to check the predicate feature and the object case feature respectively).

As Fischer et al. (2000: 209) point out, a drawback of their analysis is that it is not clear what motivated this change in checking requirements. It therefore does not provide insight into the shift to postverbal particles. In my view, an analysis of the change-over to postverbal particles should be able to explain the causes of the change in position, whether grammar-internal or grammar-external, or both. In §7.2, I present my analysis of the shift to postverbal particles, providing an insightful story for this change-over.

Fischer et al. (2000: 206–209) observe that the base position of particles is postverbal in the Middle English period and that they no longer mark the underlying position of the verb. At the same time, they note that the distribution of adverbs may indicate that Middle English particles could still be stranded by verb movement. Consider the example in (3), from Fischer et al. (2000: 207).

(3) com baldeliche forð

and came quickly forth

‘and came quickly forth’

(St.Marg. (1) 40.28)

My study on particle stranding as a result of verb movement in Middle English (cf. Chapter 6) has shown that examples like the one in (3) are quite frequent in (early) Middle English, especially in the first two PPCME2 periods (1150–1350). This suggests that particles were still analysed as independent syntactic elements well into the Middle English period. On the other hand, I have also shown that the predominance of the V–Prt pattern and the development of non-transparent meanings caused an increase in the syntactic dependence of particles.

7.1.2 Van Kemenade and Los (2003)

Van Kemenade and Los (2003) analyse Old and Middle English particles as secondary predicates (cf. Fischer et al. 2000). They argue that particles were still secondary predicates
after they shifted to postverbal position, because secondary predicates ceased to occur preverbally as a result of the loss of OV orders (cf. Fischer et al. 2000). However, they do not discuss the consequences of the secondary predicate status of particles for their distribution in any detail. They only show that the rise of postverbal particles and VO orders go hand in hand. For example, they point out that Middle English examples containing a preverbal particle show Old English (i.e. OV, non-V2) word order patterns (van Kemenade and Los 2003: 108), while examples containing a postverbal particle show VO order. Moreover, instances of preverbal particles in later Middle English texts are “extremely marked” (van Kemenade and Los 2003: 108). Examples are given in (4) (from van Kemenade and Los 2003: 108–109).

(4) a. Kyng Alisauneder is out yride – þre noble kniȝttes ben went hym myde
 king Alexander is out ridden three noble knights are gone him with
 ‘King Alexander has ridden out – three noble knights have gone with him’
 (cmailisau I, 231)

 b. And þat he out-kest her sede in terþes and departed hem in
 and that he out-cast their seed on earth and dispersed them in
 kyngdomes
 ‘And that he cast out their seed on the earth and dispersed them in [different] nations’
 (cmearlps, Psalm 105 (106), 26)

 c. I ouте-take not o creature
 I ouте-take not one creature
 ‘I exclude not a single creature’
 (cmclud 24)

Van Kemenade and Los (2003: 108) point out that the preverbal particle in (4a) is the result of the demands of rhyme. In (4b), the preverbal particle order can be adduced to the fact that the text slavishly follows the Latin original. In (4c), the particle and the verb appear to have been reanalysed as an ICV.

While I agree with van Kemenade and Los (2003) that Old and Middle English particles are secondary predicates, they fail to provide an account of the distribution of particles in these periods as well as a syntactic analysis of the shift to postverbal particles. In §7.2, I will provide a more detailed picture of the distribution of particles in Middle English, showing how the (secondary predicate) status of the particle plays a role in this.

7.2 A lexical decomposition analysis of early Middle English VPCs

The change-of-state semantics of early Middle English VPCs and the secondary predicate status of early Middle English particles makes them amenable to the lexical decomposition approach proposed for Old English in Chapter 5 and for Present-Day English in Chapter 3.
The change-of-state meaning of VPCs is directly reflected in the syntactic structure. The structure I adopt for early Middle English VPCs is given in (5).

(5) a. & our Lord toke me vp.
and our Lord took me up
‘and our Lord took me up’
(cmearlps, 144.6317)
b. εP
 our Lord ε
 CAUSE
 VP
 me
 V
 AP
 TOKE
 PrtP
 up

The structure in (5b) reflects the change-of-state semantics of the early Middle English VPC toke up ‘took up’, from the M2 (1250–1350) text *The Earliest English Prose Psalter*. The close semantic unit of the verb and the particle is expressed by generating the lexically decomposed verb and the particle as one constituent, AP. The particle up expresses the endpoint of the activity denoted by the verb toke ‘took’, affecting the object me in SpecVP (capturing the intuition that early Middle English particles are secondary predicates). The full-blown lexical verb is derived by conflation, i.e. head-movement of the abstract adjective TOKE to V (BECOME) and ε (CAUSE), where it picks up verbal properties.

Just as in Old English and Present-Day English, projection of the particle is thought to be constrained by the Structural Economy Principle, repeated in (6) from Chapters 3 and 5.

(6) *Structural Economy Principle*

An element does not project, unless it is required to do so by syntactic, semantic and/or pragmatic factors.

By the Structural Economy Principle, which favours heads over phrases, particles are heads by default and only project a phrase when there is (robust) evidence to do so. In the example in (5a), the particle projects a phrase because it occurs in (end)focus position. Focus positions, as argued in Chapter 3, map onto a phrase in syntax. The particle receives focus, because the pronominal object carries old information and is therefore backgrounded.
An important issue with respect to early Middle English particles is their structural status. As I have shown in Chapter 6, early Middle English particles are predominantly analysed as phrases. The strongest evidence for their syntactically independent status is the shift particles underwent in the transition from Old to Middle English. In Chapter 6 I also presented evidence that particles were no longer always analysed as phrases (as in Old English), but instead received the default head analysis. This can be thought of in terms of grammaticalisation, which is often accompanied by a loss of structure, i.e. a loss of syntactic independence. In the next section, I will adopt the word order analysis taken on for Old English in Chapter 5 and will show that the structural status of early Middle English particles plays a crucial role in the word order possibilities.

7.3 A pied piping analysis of particle syntax in early Middle English

In this section, I will present an analysis of the syntax of particles after the transition from Old to Middle English. The analysis proposed here follows Biberauer and Roberts’ (2005) account of word order variation in Old and Middle English and was also adopted for Old English in Chapter 5. Biberauer and Roberts (2005) have nothing substantial to say about the syntax of Old and Middle English particles, and are noncommittal about the exact position and structure of particles. I will show that the syntax of early Middle English VPCs can be accounted for by combining the lexical decomposition analysis of early Middle English VPCs proposed in §7.2 and the word order analysis as proposed by Biberauer and Roberts (2005). The analysis also provides insight into the transition to postverbal particles.

7.3.1 The loss of VP pied piping in early Middle English

Following Biberauer and Roberts (2005), Old English grammar was said to have various options in satisfying v’s and T’s EPP requirements (Chapter 5). Thus, the EPP features of v and T in Old English can be checked either by movement of the constituent containing a D feature (i.e. the object and the subject respectively), or by pied-piping the maximal projection containing that constituent (i.e. VP and vP respectively). The VP pied-piping option carries VP material, including the particle, across the verb (which has moved out of the VP) and derives OV orders. This means that particles, which are inside the VP, will surface in preverbal position when the derivation involves VP pied-piping. As pointed out in Chapter 5, the particle, although it forms a close semantic unit with the verb, is a syntactically autonomous element (i.e. it projects a phrase). This means that it moves independently from the verb, as part of the VP. This is illustrated in (7b); the example in (7a) is repeated from (1a).

(7) a. & hi manega deofolseoccupcness utadrifon, and they many demoniacal possessions out-drove ‘and they cast out many devils’ (cowsgosp, Mk [WSCp]:6.13.2572)
The derivation in (7b) involves two large XP or pied piping movements. The first is movement of the VP to the inner specifier of vP in order to check v’s EPP feature. The second is movement of the vP to the specifier of TP in order to check T’s EPP feature.

In Old English, verb movement often results in VO surface word orders, stranding the particle in postverbal position. Such word order patterns were shown to be derived by the movement of DP constituents, rather than by pied piping of larger constituents. VP material other than object DPs remain in the VP and surface postverbally. Again, the phrasal status of Old English particles means that many elements can intervene between the verb and the postverbal particle. To give one example, Old English particles can be stranded by finite verb movement (V2).

After the transition to Middle English, particles predominantly occur in postverbal position. This is not only evidence for the syntactic autonomy of particles, but also suggests that VP pied-piping is no longer an option. Biberauer and Roberts (2005) propose that, in early Middle English, VP pied piping was reanalysed as object DP movement (stranding the VP) in cases in which the VP only contained an object DP. This is schematised in (8), taken from Biberauer and Roberts (2005: 22).

(8) [p [vp tv O] V+P tvP] > [p O V+P [vp tv tv]]

Biberauer and Roberts suggest that “the reanalysis was caused by a decrease in unambiguous evidence for pied piping” (Biberauer and Roberts 2005: 21). Language learners chose the structurally more simple option of DP movement, ultimately leading to the loss of the pied piping option for checking v’s EPP feature which had been part of Old English grammar. An important consequence of this reanalysis was that VP material other than direct objects now follows auxiliaries and main verbs (Biberauer and Roberts 2005: 21), (9) (taken from Biberauer and Roberts 2005: 22–23).
Examples such as (9a), in which the direct object (\textit{swuch fulðe} ‘such filth’) but not the particle (\textit{ut} ‘out’) precedes the verb (\textit{speteð} ‘spews’), are not attested before the thirteenth century. They can be accounted for by the proposed reanalysis (8), which took place in the early Middle English period. The example in (9b) contains a direct object \textit{þeose storien} ‘these stories’, which precedes the verb \textit{tellen} ‘tell’, and an indirect object \textit{ou} ‘(to) you’, which follows the verb. In Old English, both would have preceded the verb. Again, the proposed reanalysis accounts for the word order in (9b), because object DP movement leaves behind all other VP material.

Biberauer and Roberts (2005: 21–22) discuss some particle data that support their reanalysis claim. They point out that examples featuring the order object–verb–particle do not occur before the thirteenth century, but are attested afterwards. This supports their reanalysis account, because the order shows that it is just the object that has been moved and other VP-material (i.e. the particle) is left behind. An example containing the object–verb–particle order is given in (10), from Fischer et al. 2000: 203, quoted in Biberauer and Roberts (2005: 22). The derivation is presented in (11), taken from Biberauer and Roberts (2005: 22).

(9) a. þe þæt swuch fulde speteð ut in any encre care
 who that such filth spews out in any anchoress’s ear
 \textit{‘who spews out such filth in any anchoress’s ear’}
 \textit{(Ancrene Riwle I.35.29; Fischer et al., 2000: 203, 42a)}

b. < Me schal leoue sustren þeose storien tellen eft
 one shall dear sisters these stories tell afterwards
 ou to-you
 \textit{‘One shall tell these stories to you afterwards, dear sisters’}
 \textit{(Ancrene Riwle II.122.1552; Kroch & Taylor, 2000a: 155, example 32)}

(10) þe þæt swuch fulðe speteð ut in any encre care
 who that such filth spews out in any anchoress’s ear
 \textit{‘who spews out such filth in any anchoress’s ear’}
 \textit{(Ancrene Riwle I.35.29)}

(11) \[
[p \text{ swuch fulðe speteð } [VP tv tO ut [AdvP in any encre care]]]
\]

The derivation in (11) shows that the order object–verb–particle is derived by movement of the DP object rather than the entire VP(-remnant). Note that moving just the DP object was an option for satisfying \textit{v}’s EPP feature in Old English grammar, too. However, the fact that examples like the one in (10) are not attested before the thirteenth century (with the exception of a couple of late Old English examples; cf. Pintzuk 1999) supports the reanalysis account proposed by Biberauer and Roberts.

Biberauer and Roberts (2005: 22) also point out that the sharp shift in particle position after the transition to the Middle English period follows from their reanalysis account. The
high frequency of postverbal particles from early Middle English follows from the reanalysis proposed by Biberauer and Roberts: since the pied piping option (movement of the VP) has been reanalysed as DP object movement, particles will surface postverbally, being stranded with the rest of the VP. In Old English, DP object movement was just one option, and particles surfaced postverbally much less frequently. It should be noted, however, that the V–Prt pattern was predominant in the earliest Middle English texts, which were written at an earlier time than Biberauer and Roberts’ timing of the loss of VP pied piping.

Biberauer and Roberts further propose that the way in which T’s EPP feature was satisfied underwent a change in late Middle English resulting in further word order changes. In Old English, T’s EPP feature was checked either by movement of the subject DP or by pied piping of VP (containing the subject DP) to SpecTP. Biberauer and Roberts argue that pied piping of VP was reanalysed as subject DP movement (stranding the VP) in late Middle English. This is schematised in (12), taken from Biberauer and Roberts (2005: 25).

\[
[TP [p O V+P] T t_t_P [VP t_t_O t_V]] > [TP S T [p t_t_O V+P [VP t_t_O]]]
\]

The reanalysis represents a choice on behalf of the language learner to adopt a simpler structure and explains further word order changes, such as the loss of V–Aux order, that occurred in late Middle English. The reader is referred to Chapter 7 for a more detailed discussion of Biberauer and Roberts’ (2005) account of Middle English.

Biberauer and Roberts (2005: 37) suggest that the two reanalyses were caused by a combination of factors. First of all, the fact that the stranding (i.e. DP movement) option is the simpler option (because it involves movement of less structure) caused it to become favoured over the pied piping (i.e. VP and IP movement) option. Secondly, they observe that there was less evidence in Old English and early Middle English for analysing English as an OV language than in other West-Germanic languages. One piece of OV evidence they mention is the fact that particles are stranded by verb movement. They claim that particle stranding was obscured by the fact that verb–particle combinations in early Middle English were quite rare. However, I have shown in Chapter 6 that there is still clear evidence for particle stranding by verb movement in the Middle English period. I therefore do not subscribe to their suggestion that particle stranding was obscured in early Middle English and contributed to the reanalysis of the pied piping movements as DP movements. Having said this, it should also be observed that, since particle stranding is only one piece of evidence they provide in support of the proposed reanalysis, this does not undermine their argument significantly.

To conclude, the word order analysis adopted for Old English in Chapter 5 can be extended to account for the shift in particle position. I follow Biberauer and Roberts (2005), who argue that the postverbal position of VP material other than objects in early Middle English is the result of a reanalysis of VP pied-piping as DP object movement. An attractive aspect of the analysis is that the change is not a reflex of changes in some trigger (i.e. the

1 It should be noted that Old English particles frequently surfaced in postverbal position as a result of finite verb movement (cf. Chapter 4).
CHAPTER 7

EPP features in Biberauer and Roberts’ account, which would be hard to motivate, but rather follow from changes in the way in which the trigger is satisfied. As pointed out in Chapter 5, the word order analysis of Biberauer and Roberts does not include an analysis of particles, in the sense that the structural position and the structural status of particles are not discussed. In the next section I will show that a principled analysis of their syntax can be achieved when the lexical decomposition analysis of early Middle English VPCs proposed in §7.2 is adopted.

7.3.2 An account of the shift to postverbal particles

In this section, I will show that the pied piping analysis (cf. Biberauer and Roberts) and the analysis of early Middle English particles as phrases (cf. Chapter 6) account for the shift to postverbal particles and the syntactic distribution of early Middle English particles. Early Middle English particles, being phrases, act as syntactically autonomous elements, which explains why they were amenable to word order change. As a result of the reanalysis of VP movement (pied piping) as DP object movement (stranding) in early Middle English, particles, as well as other VP material (except objects), are ‘stranded’ and thus surface postverbally. Crucially, this stranding of the particle is related to its phrasal status. As the discussion in Chapter 6 has shown, particles occasionally still occur in preverbal position in early Middle English, but most of these cases date from a time when VP pied piping was still an option. Later examples containing a preverbal particle often either represent a derived order and contain a topicalised particle or are from a verse text in which the position of the particle meets the demands of rhyme.

The discussion of the Middle English data in Chapter 6 shows that preverbal particles have become a minority pattern early in the Middle English period. The figures, finite and non-finite verbs taken together, for the immediately preverbal particle pattern are presented once more in Table 1.

<table>
<thead>
<tr>
<th>Prt–V</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>main</td>
<td>8</td>
<td>5.4</td>
<td>149</td>
</tr>
<tr>
<td>coord main</td>
<td>1</td>
<td>1.6</td>
<td>61</td>
</tr>
<tr>
<td>sub</td>
<td>21</td>
<td>12.1</td>
<td>173</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>7.8</td>
<td>383</td>
</tr>
</tbody>
</table>

Table 1: The Prt–V pattern in the M1, M2 and M3 periods
As expected, the number of Prt–V occurrences is highest in M1 clauses. The pattern is most frequent in M1 subordinate clauses, indicating that these examples still reflect Old English subordinate clause syntax (particles are often preverbal because of the minor role of verb movement in this environment). The M1 period stretches from 1150–1250 (cf. PPCME2; Kroch and Taylor 2000b), so the examples from this period involving a preverbal particle can be derived by pied piping the VP: pied piping of the VP was reanalysed as movement of the DP object in early Middle English (Biberauer and Roberts 2005). Although Biberauer and Roberts are not specific about the exact timing, their discussion of the order direct object–verb–particle, which is attested after the thirteenth century but not before, suggests that the date they have in mind for the reanalysis is around 1200. Of the M1 texts included in PPCME2 and studied here, the Lambeth Homilies, Vices and Virtues, Ancrene Riwle and the texts from the Katherine Group are dated after 1200, all around 1225–1230. Some of the examples involving the Prt–V pattern are indeed from these texts. Given the conservative syntax of these texts, it is likely that the Prt–V pattern is still derived by pied piping of the VP, which would mean that the date of the reanalysis is half a century later than the start of the thirteenth century. The derivation of the Prt–V pattern in an example from the M1 period, (13a), is presented in (13b).

(13) a. All ðis wored ðes dieules hus ær Crist come, who him out cast
 all this world was this devil’s house before Christ came, ‘The whole world was this devil’s house before Christ came, who cast him out’
 (cmvices1, 111.1330)

b. [VP him V [AP WARP [PrtP ut]]]

 [warp [VP him tA+V [tA tA [PrtP ut]]]]
 MOVE p, MOVE A ➔

 [warp [VP him tA+V [AP tA [PrtP ut]]]]
 MOVE VP ➔

 [warp [VP him tA+V [AP tA [PrtP ut]]] warp tVP]
 MOVE T, MOVE p ➔

 [VP warp [warp [VP him tA+V [tA tA [PrtP ut]]] tA+V+] tVP]
 MOVE tP ➔

 [VP warp [VP him tA+V [AP tA [PrtP ut]]] tA+V+] warp tP]

The derivation in (13b) involves pied piping of the VP in order to satisfy the EPP feature of v. This movement operation was one of two options in Old English grammar and is soon lost in Middle English in favour of object DP movement.

In Chapter 6, I discussed the following example from the M1 text Ancrene Riwle.

A SYNTACTIC ANALYSIS OF THE EARLY MIDDLE ENGLISH VPC 291
In this example, the particle immediately precedes a non-finite verb. Given the date of the text, first half of the thirteenth century, the preverbal order in itself is not surprising; the option of pied piping the VP still existed at the time. The postverbal position of the object ham ‘them’, however, raises the question of how the preverbal particle order is derived. Recall that OV orders are derived by pied piping the entire (remnant) VP to SpecP. Since the particle is preverbal, we expect that the VP has been pied piped, but at the same time this option is ruled out by the postverbal position of the object. Movement of the VP followed by extraposition of the object is implausible, given that the object is pronominal. Closer examination of the combination of the particle and the verb reveals that it is probably an ICV (possibly reanalysed from an SCV) rather than an SCV. The verb uphold has survived into Present-Day English and the OED lists it and gives early examples. The example from the Ancrene Riwle is given under entry 2, meaning ‘to support, sustain, maintain, by aid or assistance; to preserve unimpaired or intact’. An ICV analysis of uphalden in example (14) solves the derivation problem sketched above.

Later occurrences of preverbal particles invariably represent marked examples. As van Kemenade and Los (2003: 108) point out, these either occur “in verse texts to meet the demands of rhyme”, are “slavish translations from Latin”, or “some appear to have been reanalysed as ICVs”. Table 1 shows that there are 7 occurrences of the Prt–V pattern in the M2 period. As noted in Chapter 6, all 7 examples are from the Earliest Complete English Prose Psalter, a text which is a slavish translation of the Latin original. It is unlikely, therefore, that the examples with the preverbal particles represent the grammar of the time.

In the M3 period, there are 5 attestations of the Prt–V pattern (cf. Table 1). As discussed in Chapter 6, the 4 main clause examples all involve a topicalised particle and verb. The examples are repeated in (15).

(15) a. Up roos thanne an advocat that was wys, ‘Then a lawyer who was wise’ (cmctmeli, 218.C2.66)

b. Up stirten thanne the yonge folk atones, ‘Then the young people simultaneously’ (cmctmeli, 219.C1.80)
c. **Up roos** tho oon of thise olde wise,
 up rose then one of these old wise
 ‘Then one of these old wise men arose’
 (cmctmeli, 219.C1.84)

d. **A surgien, by licence and assent of swiche as weren wise, up roos**
 A surgeon by licence and assent of such as were wise, up rose
 ‘A surgeon arose by licence and assent of those who were wise’
 (cmctmeli, 218.C2.58)

All 4 cases are from the same text, Chaucer’s *The Tale of Melibee*, and all contain the particle **up**. In 3 of these 4 cases, the verb is a form of **rysen** ‘to rise’, the other case contains a form of the verb **sterten** ‘to start’. Both the particle and the verb have been topicalised, and the fact that the particle precedes the verb may be due to the primary stress of the particle, which makes it more suitable as the first topicalised element.

The other example from the M3 period showing the Prt–V pattern is given in (16).

(16) **þat þe brused blod may out ren.**
 that the bruised blood may out run
 ‘that the bruised blood may run out’
 (emhorses, 119.325)

This example is from *The Late Middle English Treatise on Horses*, a prose text written around 1450 (PPCME2; Kroch and Taylor 2000). Given the late date of the text, the appearance of a preverbal particle is unexpected. The order is marked, but does not appear to be the result of extra-linguistic factors: the text is written in prose, and is not translated from a foreign original. However, on closer examination of the example, **out** is probably not a particle, but an adverb. The context of the example justifies this conclusion, (17).

(17) **& þen schalt þou garce it with many smale pikes meneliche**
 and then shall you pierce it with many small pikes averagely
 deep þat þe brused blod may out ren
 deep that the bruised blood may out run
 ‘and then you must pierce it averagely deep with many small pikes so that the bruised blood may run out of it’
 (emhorses, 119.325)

The intransitive verb **run**, in combination with **out**, simply means ‘to run out’.\(^2\) The example should strictly speaking not be included in my data, since **out** is not a particle (and **outrun** therefore not a VPC), but an adverb.

\(^2\) The entry for outrun in the OED Online contains a similar example, (i) (subentry 1: *To run out*):
It is clear from the examples presented and discussed above that the Prt–V pattern was extremely marked in (early) Middle English. The overall picture of this period shows the predominance of postverbal orders, among which the V–Prt–Obj order is strikingly frequent.

The pattern Prt…V is attested even less frequently than the pattern Prt–V. The numbers for the M1, M2 and M3 periods are given in Table 2, repeated from Chapter 6.

<table>
<thead>
<tr>
<th>Pt…V</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>main</td>
<td>2</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td>coord</td>
<td>1</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>sub</td>
<td>1</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: The Pt…V pattern in the M1, M2 and M3 periods

Table 2 shows that the pattern Pt…V is attested only 4 times in the M1 period, once in the M2 period, and is not attested at all in the M3 period. Examination of the examples (cf. Chapter 6) revealed that only 3 of the total of 5 examples involving the Pt…V pattern reflect a true preverbal order as we know it from Old English. Of the other 2 examples, one involves a topicalised particle (Chapter 6, example (11), from the *Ormulum*), and one was argued to contain an adverb rather than a particle. The 3 representative examples are given in (18), repeated from Chapter 6.

(18) a. ‘Nu scal ðe alder of ðis woreld ut bien 3edriuen.’

 ‘Now the elders shall be cast out of this world’

 (cmvices1, 111.1332)

(19) i. þe crown of thornes þat was thrested on his heved þat þe blode out ran

 ‘the crown of thorns that was firmly pressed on his head, so that the blood flowed out’

 (Hampole Pr. Consœ. 5297 (1340))
The examples in (18a,b) are from *Vices and Virtues*, a text from the East-Midlands area. This text has retained some Southern forms, because it was copied from a Southern version. The patterns in (18a,b) are examples of such conservative forms, resembling the Old English situation. The example in (18c) is from the M2 text *Ayenbite of Inwyt*, which is written in the Kentish dialect, but is a fairly literal translation of the French original *Somme Le Roi* (PPCME2; Kroch and Taylor 2000b).

The derivation for Prt…V patterns such as the ones in (18) is illustrated in (19), using example (18c). It comprises the pied piping options, which cause VP material other than the object (and the verb, which has moved) to be in preverbal position. The fact that early Middle English particles project a phrase, as argued above, explains that it is moved as part of the VP (independently of the verb).

As (19) shows, the derivation of Prt...V patterns in early Middle English involve the VP pied piping option, a ‘remnant’ of Old English grammar in early Middle English. In (18c), the negative marker *ne* ‘not’ intervenes between the verb and the particle. This is the result of T’s EPP feature being satisfied by rP pied piping, causing the particle to precede the negative marker. The rP pied piping option continued to exist until late Middle English (Biberauer and Roberts 2005: 25) and was still available at the time of the *Ayenbite of Inwyt*, which was written in 1340 (PPCME2; Kroch and Taylor 2000b).
In Chapter 6 I discussed in detail the rise of the postverbal particle and observed that the V–Prt pattern was predominant from early Middle English onward (cf. also Hiltunen 1983). The number of occurrences of the V–Prt pattern for the M1, M2 and M3 periods are given in Table 3, repeated from Chapter 6.

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>Ntotal</td>
</tr>
<tr>
<td>main</td>
<td>87</td>
<td>58.4</td>
<td>149</td>
</tr>
<tr>
<td>coord main</td>
<td>35</td>
<td>57.4</td>
<td>61</td>
</tr>
<tr>
<td>sub</td>
<td>113</td>
<td>65.3</td>
<td>173</td>
</tr>
<tr>
<td>Total</td>
<td>235</td>
<td>61.4</td>
<td>383</td>
</tr>
</tbody>
</table>

Table 3: The V–Prt pattern in the M1, M2 and M3 periods

Table 3 shows that the percentages of V–Prt are very high in all clause types in the M1, M2 and M3 periods. In Chapter 5, I argued that instances of V–Prt in Old English represent the first instances of amalgamation of the verb and the particle, by which the verb and the particle are (re)analysed as a syntactic complex. The particle in these cases is analysed as a head due to a lack of evidence for phrasal status. We would like to know, then, to what extent the Middle English data presented in Table 3 support my claim about amalgamation of the verb and the particle. As the discussion of particle stranding by verb movement in Chapter 6 has shown, instances of V–Prt may reflect string-vacuous verb movement. This is the case when the verb involved is imperative, for example. In such instances, the verb and the particle are clearly not a syntactic complex. There are only a few examples in which the verb must be assumed to have moved string-vacuously, all of which involve an imperative verb. The figures are presented in Table 4. The total numbers for each period represent the total number of Vf–Prt cases in each period.

<table>
<thead>
<tr>
<th>Vf–Prt VM</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>Ntotal</td>
</tr>
<tr>
<td>main</td>
<td>2</td>
<td>2.3</td>
<td>87</td>
</tr>
</tbody>
</table>

Table 4: String-vacuous verb movement in Vf-Prt cases in the M1, M2 and M3 period
As the figures in Table 4 show, there is little direct evidence for string-vacuous movement in the Vf–Prt cases. Examples in which the verb has moved string-vacuously are given in (20).

(20) a. **hold up** echnen on hech towart heouenc.
 hold up eyes on high towards heaven
 ‘Hold up your eyes high towards heaven’
 (emanceriw, II.214.3083)

b. **Sende out** by lyþt and by solenes;
 send out your light and your truth
 ‘Send out your light and your truth’
 (emearlps, 52.2246)

c. **do of** thin hosen & thi schon for the place þat þou
 do off your socks and your shoes because the place that you
 stand on is land holy & blessed.
 ‘Take off your socks and shoes, because where you stand is holy and blessed
 land’
 (emmandev, 39.975)

All examples in (20), (20a) from the M1 period, (20b) from the M2 period and (20c) from the M3 period, contain an imperative verb, which has moved string-vacuously, stranding the particle.

The remaining number of V–Prt instances can be shown to involve amalgamation of the verb and the particle when the object directly follows the verb and the particle. The figures for the Vf–Prt–Obj and the Vnf–Prt–Obj pattern are presented in Tables 5a,b.3

<table>
<thead>
<tr>
<th>Vf–Prt–Obj</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td>%</td>
<td>21.2</td>
<td>33.3</td>
<td>34.1</td>
</tr>
<tr>
<td>Ntotal</td>
<td>85</td>
<td>57</td>
<td>185</td>
</tr>
<tr>
<td>coord</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main</td>
<td>5</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td>N</td>
<td>14.3</td>
<td>50.0</td>
<td>36</td>
</tr>
<tr>
<td>%</td>
<td>14.3</td>
<td>50.0</td>
<td>52.9</td>
</tr>
<tr>
<td>Ntotal</td>
<td>35</td>
<td>4</td>
<td>68</td>
</tr>
<tr>
<td>sub</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main</td>
<td>15</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>N</td>
<td>13.3</td>
<td>13.6</td>
<td>12.4</td>
</tr>
<tr>
<td>%</td>
<td>13.3</td>
<td>13.6</td>
<td>12.4</td>
</tr>
<tr>
<td>Ntotal</td>
<td>113</td>
<td>22</td>
<td>218</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>24</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>16.3</td>
<td>28.9</td>
<td>26.8</td>
</tr>
</tbody>
</table>

Table 5a: The Vf–Prt–Obj pattern in the M1, M2 and M3 periods

3 The total numbers for the main clauses in each period are excluding the ‘string-vacuous cases’ shown in Table 4.
The figures in Tables 5a,b show that there is a good deal of evidence for the amalgamation of the verb and the particle in Middle English, especially with the Vnf–Prt–Obj pattern. We must make sure that cases with a heavy object are excluded from the evidence for amalgamation status. In such examples, the order V–Prt–Obj may reflect extraposition of the object rather than amalgamation of the verb and the particle. There is only one example (included in Table 5a) which contains a heavy object. It is given in (21).

(21) Ðis ilche iustise warp ut him ðe was briht angel on heuene.

‘This same justice threw out him who was a bright angel in heaven’

The pronominal object him provides support for extraposition in this example, because pronominal objects are normally not allowed after the verb and the particle in Middle English.

My claim that the V–Prt–Obj pattern reflects amalgamation of the verb and the particle predicts that there are no instances in which the verb and the particle, which are separated by non-VP material, are followed by the object. The only example I found in the M1, M2 and M3 period is given in (22).

(22) hef for þi wið treowe & hardi bileaue up þine pro vingres.

‘Therefore lift up your three fingers with true and hardy belief’

In (22), the (imperative) verb hef ‘lift’ is separated from the particle up by the adverb for þi ‘therefore’ and the PP wið treowe & hardi bileaue ‘with true and hardy belief’. The object þine pro vingres ‘your three vingres’ follows the particle.

The proposed analysis of the V–Prt–Obj order as involving amalgamation of the verb and the particle requires further explanation. Recall from the discussion of Old English V–
Prt–Obj orders that I analysed these as the first instances in which the particle is analysed as a head rather than a phrase. This was argued to be constrained by the Structural Economy Principle, which favours heads over phrases. Thus, a lapse in evidence for phrasal status leads language speakers to switch to the default head analysis. The frequency of the V–Prt–Obj order in early Middle English suggests that there has been a boost in the head analysis (and thus a relatively dramatic decrease in evidence for phrasal status of particles). I analyse this development, involving loss of structure, as a grammaticalisation process which can be ascribed to economy considerations (cf. van Gelderen 2004). I suggest that the language contact situation with Old Norse at the end of the Old English period (cf. Chapter 6) accelerated the decrease in evidence for phrasal status and thus the grammaticalisation of phrase to head. Note that I do not assume that the grammaticalisation of particles was contact-induced (on contact-induced grammaticalisation see Heine and Kuteva 2003). Rather, I assume the grammaticalisation process was accelerated by the language contact situation. Particles which are analysed as heads are not syntactically independent like their phrasal counterparts and have to attach to the verb in syntax. This, in turn, means that non-projecting particles form a syntactic unit with the verb. As such, they are part of movement operations targeting the verb, which explains why these particles immediately follow the verb.

The derivation for V–Prt–Obj orders is similar to the one I proposed for Old English occurrences of the V–Prt pattern, (23b).

(23) a. Myn hert put out gode worde;
 my heart puts out good words
 ’My heart expresses good words’
 (emcatlp1, 54.2345)

b. \[\text{vp gode worde} [\text{ap put [n, out]]} \]
 \[\text{vp gode worde} [\text{ap [\text{t–p, put out}]}] \]
 \[\text{vp [\text{t–p, put out}]} \]
 \[\text{vp t–p, put out} [\text{t–p, put out} [\text{t–p, put out}]] \]
 \[\text{vp t–p, put out} [\text{t–p, put out} [\text{t–p, put out}]] \]
 \[\text{vp t–p, put out} [\text{t–p, put out} [\text{t–p, put out}]] \]
 \[\text{vp t–p, put out} [\text{t–p, put out} [\text{t–p, put out}]] \]
 \[\text{vp t–p, put out} [\text{t–p, put out} [\text{t–p, put out}]] \]
 \[\text{vp t–p, put out} [\text{t–p, put out} [\text{t–p, put out}]] \]
 The example in (23a) is from the M2 text *The Earliest Complete English Prase Psalter*, written around 1350 (PPCME2, Kroch and Taylor 2000). The reanalysis of VP pied piping as DP object movement had already taken place (Biberauer and Roberts 2005) and DP object movement in order to satisfy v’s EPP feature was no longer one of two options (as it had
been in Old English), but the only option. Thus, the derivation in (23b) involves movement of the DP object *gode worde* ‘good words’ to the (inner) specifier of *vP*. T’s EPP feature is satisfied by moving the subject *my hert* ‘my heart’ to SpecTP. Note that the other option, pied piping of *vP*, was also still a grammatical option at this time. The particle is analysed as a head by default (Structural Economy Principle) and forms a complex syntactic head with the verb. Conflation of the lexically decomposed verb therefore also involves the particle, which surfaces in immediately postverbal position.

According to Biberauer and Roberts (2005: 22), the dominance of the V–Prt pattern in early Middle English supports their claim that pied piping of VP was reanalysed early on in the Middle English period. They seem to suggest that the exact date probably lies around 1300 (Biberauer and Roberts 2005: 21–22), but this does not explain the high frequency of the V–Prt order before 1300. The pattern is the most frequent in the earliest Middle English texts, which suggests that the VP pied piping option had been reanalysed as DP movement earlier than 1300, maybe even at the end of the Old English period.

The suggested derivation for V–Prt–Obj orders, i.e. involving complex head formation of the verb and the particle, resembles the situation in Present-Day English, where this is one of the two options and occurs when the particle does not project (cf. Chapter 3).

The case study of particle stranding by finite verb movement in early Middle English presented in Chapter 6 showed that there is robust evidence for particle stranding in early Middle English. Evidence comes from examples in which non-VP material intervenes between the verb and the postverbal particle and from imperative examples. I will now discuss the V…Prt pattern, and will point out those cases that involve finite verb movement. The V…Prt pattern, though less dominant than the V–Prt pattern, is very frequent from early Middle English onward. The pattern reflects the syntactic autonomy of particles, which is structurally represented as projection (PrtP). The figures are presented in Table 6, repeated from Chapter 6.

<table>
<thead>
<tr>
<th>V…Prt</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>main</td>
<td>52</td>
<td>34.9</td>
<td>149</td>
</tr>
<tr>
<td>coord</td>
<td>24</td>
<td>39.3</td>
<td>61</td>
</tr>
<tr>
<td>sub</td>
<td>38</td>
<td>22.0</td>
<td>173</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>29.8</td>
<td>383</td>
</tr>
</tbody>
</table>

Table 6: The V…Prt pattern in the M1, M2 and M3 periods
The discussion in Chapter 6 showed that, in Middle English, more elements can intervene between the verb and the particle than in Present-Day English. In Present-Day English, only objects (nominal and pronominal) and, in the case of intransitive VPCs, adverbs such as right may intervene between the verb and the particle. In Middle English, besides objects and adverbs, PPs and negative adverbs could intervene between the verb and the particle, or a combination of these elements. In addition, the subject can intervene as a result of verb movement in questions. Some examples are presented in (24).

(24) a. & heoued hire on heh up;
 and raised her on high up
 ‘and raised her up on high’
 (emmagana, 84.471)

b. warpeð hit eft ut.
 throw it quickly out
 ‘(it) throws it out quickly’
 (cmhali, 155.395)

c. but he putte hem nou3t out;
 but he puts them not out
 ‘but he does not put them out (= exile them)’
 (empolych, VI,369.2703)

d. whi puttest tou me out?
 why put you me out
 ‘Why do you put me out (= exile me)?’
 (cmearlps, 52.2243)

In (24a), the sequence of the verb and the particle is interrupted by a pronominal object, hire ‘her’ and a PP, on heh ‘on high’. In Present-Day English, the PP has to follow the particle. In (24b), the intervening elements are a pronominal object, hit ‘it’, and an adverb, eft ‘quickly’. It is possible in Present-Day English for an object and an adverb to intervene between the verb and the particle, but the adverb has to be a degree adverb such as right or straight. Pat threw it right/straight out, *Pat threw it quickly out. The example in (24c) is a negative clause without do-support. The verb has fronted as a result of which the object and the negative adverb nou3t ‘not’ intervene between the verb and the particle. The wh-question in (24d) also lacks do-support, and verb fronting has caused the subject and the pronominal object to intervene between the verb and the particle.

The derivation of V…Prt orders may differ depending on the number and type of the intervening elements, but it always contains a projecting particle. An early Middle English example in which the only intervening element is an object and in which the verb is finite could be derived both by pied piping of the VP and DP object movement. Consider the example in (25a) and its two possible derivations, (25b,c).
At the time of the composition date of *Sawles Warde*, a text written around 1225, possibly 1200 (PPCME2; Kroch and Taylor 2000b), VP pied piping had not yet been reanalysed as DP object movement and *s*’s EPP feature could be satisfied either by VP pied piping or by DP object movement. Given that the derivation involving DP object movement is more economical than the more complex pied-piping derivation, derivation (25c) is preferred. Note that this also supports the reanalysis of VP pied-piping to DP object movement in early Middle English: the learner will prefer the simplest one (i.e., the one involving movement of the least structure). Why does the learner choose the less economical option of projection for the particle, though? I will argue that this is because the particle receives focus. Following an observation by Lambrecht (1994), I proposed in Chapter 3 that focus maps onto a phrase in syntax. Since the pronominal object is a background constituent (it contains old information), the learner chooses to assign focus to the particle, which triggers projection.
There is no choice between VP pied piping and DP object movement for early Middle English examples involving V...Prt. Since the verb is non-finite, it will not leave the VP, which means that the rest of the VP material must remain in situ in order to keep their postverbal position. Consider the example in (26a) and its derivation in (26b).

(26) a. & speowen hit ut ber
 and spit it out there
 'and spit it out there'
 (cmancriw, II.69.778)

 b. [VP hit [AP SPEOWEN [PrtP ut]]]
 MERGE v, MOVE A ►

 [P speowen [VP hit tA+V [AP tA [PrtP ut]]]]

The derivation in (26b) raises the question how v’s EPP feature is satisfied, since neither the DP object nor the VP has moved. According to Biberauer and Roberts (2005), v has an optional EPP feature in Old English, which means that its effects are sometimes invisible (i.e. no movement). When there are no effects, there is no EPP feature and the object remains in situ (there is no EPP feature to check). Objects (and other VP material) that stay in situ receive focus. 4 Biberauer and Roberts (2005: 19) suggest that postverbal position in Old English “may have come to rival the preverbal Nuclear Stress position identified by Cinque (1993) as the default locus of focus in Germanic” (Biberauer and Roberts 2005: 19).

In Middle English, postverbal position became predominant, indicating that v’s EPP feature was still optional in that it was not always present. This, then, is the case in the example in (26a). Note that this derivation is not only available for the postverbal pattern with non-finite verbs. The example in (25a) may also be derived by leaving the VP material in situ. So in fact there are three possible derivations for the example in (25a).

As already mentioned above, examples showing the order V...Prt often involve finite verb movement (cf. Chapter 6). Examples involving finite verb movement were given in (24). One of these is repeated in (27) (cf. (24a)).

(27) & heoueð hire on heh up;
 and raised her on high up
 'and raised her up on high'
 (cmmarga, 84.471)

In (27), the particle up is separated from the verb heoueð ‘raised’ by the pronominal object hire ‘her’ and by the PP on heh ‘on high’. The intervening PP (non-VP material) indicates that

4 Note that this does not contradict my claim that it is the particle, rather than the object between the verb and the particle, that receives focus. Of course, these objects are never completely unstressed, but rather receive secondary stress, whereas particles receive primary stress.
the verb has moved to a position higher than T. I propose that early Middle English examples like the one in (27) are derived by DP object movement, (28).\(^5\)

\[(28) \quad [\text{VP} \text{hire} \ [\text{AP} \text{HEOUED} \ [\text{PrtP} \text{up} \ [\text{PP} \text{on heh}]]]] \quad \text{MERGE} \, r, \text{MOVE} \, A \quad \text{↑} \\
[\text{TP} \text{heoueð} \ [\text{VP} \text{hire} \ [\text{AP} \text{tA} \ [\text{PrtP} \text{up} \ [\text{PP} \text{on heh}]]]]] \quad \text{MOVE} \, \text{DP} \, \text{hire} \quad \text{↑} \\
[\text{TP} \text{heoueð} \ [\text{VP} \text{heoueð} \ [\text{VP} \text{tDP} \text{tA+V} \ [\text{AP} \text{tA} \ [\text{PrtP} \text{up} \ [\text{PP} \text{on heh}]]]]] \quad \text{MERGE} \, T, \text{MOVE} \, r \quad \text{↑} \\
[\text{TP} \text{heoueð} \ [\text{VP} \text{heoueð} \ [\text{VP} \text{tDP} \text{tA+V} \ [\text{AP} \text{tA} \ [\text{PrtP} \text{up} \ [\text{PP} \text{on heh}]]]]] \quad \text{MOVE} \, PP \quad \text{↑} \\
[\text{TP} \text{heoueð} \ [\text{VP} \text{heoueð} \ [\text{VP} \text{tDP} \text{tA+V} \ [\text{AP} \text{tA} \ [\text{PrtP} \text{up} \ [\text{PP} \text{on heh}]]]]] \quad \text{MERGE} \, T, \text{MOVE} \, r \quad \text{↑}]
\]

The derivation in (28) shows that the PP *on heh ‘on high’ is base-generated in the complement position of the particle, which it modifies. The object DP moves to SpecP to satisfy v’s EPP feature. The PP moves out of the PrtP and joins to the VP.

The fact that the derivation of verb movement patterns involves stranding (i.e. DP movement) after c.1250 reflects the observation made earlier that verb movement continues even when VO orders had become the norm. These examples represent cases in which the particle projects a phrase and are syntactically autonomous, which explains why they are strandable. The stranding of the particle by finite verb movement follows directly from the lexical decomposition analysis proposed here. The particle, which forms a constituent with the lexically decomposed verb, is stranded when the verb conflates and, after that, undergoes V2 to C (in main clauses and to a position lower than C in subordinate clauses).

In conclusion, the attested VPC word orders in early Middle English are accounted for by claims about the structure of early Middle English particles and by an analysis of word order change which involves the loss of grammatical options (cf. Biberauer and Roberts 2005). There is ample evidence that early Middle English particles are phrases, but they are increasingly also analysed as heads, which is the default by the Structural Economy Principle. Structural economy thus gives rise to grammaticalisation of phrase to head and particles which are analysed as heads form a complex syntactic head with the verb, since they lack syntactic autonomy. The decrease in evidence for phrasal status and the shift to postverbal particles are possibly the result of the language contact situation with Old Norse in the late Old English period. The shift to postverbal particles is also influenced by the loss of OV orders and the factors responsible for this loss. The loss of OV cannot be held responsible entirely for this development, however, since Obj–Prt remains an option and could be a case of remnant OV.

\(^5\) Note that VP pied piping was still a grammatical option at the time the text was written. VP pied piping was lost after the reanalysis of VP pied piping as DP object movement in the first half of the thirteenth century. The example in (27) is from *St. Margaret*, a text from the Katherine Group written around 1225, but possibly earlier, around 1200 (PPCMME2; Kroch and Taylor 2000b).
7.4 Conclusions

In this chapter, I presented a formal syntactic analysis of the syntax of early Middle English VPCs, focusing on the shift to postverbal particles in the transition from Old to Middle English. The analysis combines the lexical decomposition approach argued for in Chapter 3 (Present-Day English) and Chapter 5 (Old English) with the word order analysis adopted for Old English in Chapter 5 (cf. Biberauer and Roberts 2005). The distribution of early Middle English particles follows from their structural status (cf. Chapter 6) and from changes in grammatical options.

The shift to postverbal particles was shown to follow from the independent syntactic status of particles on the one hand and changes in checking options that took place in early Middle English on the other. I presented evidence which shows that early Middle English particles, like their Old English counterparts, were phrases functioning as resultative secondary predicates. This explains why particles were able to shift position: they were autonomous syntactic elements, acting independently from the verb. Their change-of-state semantics led me to adopt the same lexical decomposition approach as the one proposed for Present-Day English (Chapter 3) and Old English (Chapter 5).

The development by which particles came to be postverbal was argued to be the result of a reanalysis of VP pied-piping as DP object movement in early Middle English (following Biberauer and Roberts 2005). The reanalysis was the result of a decrease in unambiguous evidence for the more complex VP pied-piping option. As a result of the reanalysis, which meant that all VP-material other than the object stayed in situ, particles no longer appeared in a position following the verb. The phrasal status of early Middle English particles is a prerequisite for being affected by this development, because it reflects the fact that the particle acted independently from the verb in syntax. The few attestations of preverbal particles in Middle English are often found in texts from the earliest Middle English, written at a time when VP pied-piping was still around and preverbal particles could still be derived. Instances of preverbal particles from later Middle English texts are all very marked. They either involve a topicalised particle, or appear in verse texts, in which rhyme influences the position of the particle.

The analysis also captures the increase in the syntactic dependence of Middle English particles (cf. Chapter 6). As the evidence for phrasal status decreases, particles lose syntactic autonomy, which is taken to mean that particles are analysed as heads, the default by the Structural Economy Principle. Structural Economy was argued to underlie the grammaticalisation development of phrase to head. When particles are analysed as heads, they form a syntactic complex head with the verb. The structural hybridity of Present-Day English particles (Chapter 3) thus has its roots in the Middle English period. In texts from the M3 period (1350–1420) (PPCME2; Kroch and Taylor 2000b), the syntax of verb-particle combinations already closely resembles that of Present-Day English. The analysis proposed in this chapter provides insight into the origins of the syntax of the Present-Day English verb-particle combination (cf. Chapter 3).
Summary and conclusions

This thesis contributes to the longstanding debate about the structural status of particles and verb-particle combinations (VPCs) in Present-Day English. In addition, it sheds light on the syntactic development of the English VPC since late Old English. It provides insight into the structural status of Old and Middle English particles and discusses in detail the syntactic distribution of VPCs in the late Old English and early Middle English periods, accounting for the shift in particle position in the transition to Middle English.

In Chapter 1 I discussed the well-known syntactic, morphological and semantic properties of Present-Day English VPCs. The separability of particles from the verb contrasts with the apparent unitary character of the verb and the particle as shown by their word formation possibilities. Semantically, Present-Day English VPCs express a complex event, which consists of an action expressed by the verb and an endstate or –point denoted by the particle. They typically express a change-of-state and are often resultative. The meaning of Present-Day English particles varies from literal to extremely abstract, and they express a resultative meaning (with a few exceptions). The object of transitive VPCs is totally affected by the particle and the verb. Another property of Present-Day English particles discussed in this chapter is their ability to change the valency of the verb they combine with. This is sometimes manifested as the addition of an argument and sometimes as the absorption of an argument.

In Chapter 2 I critically reviewed analyses of the Present-Day English VPC that have been put forward in the literature. It was shown that analyses which treat VPCs as complex words have as their biggest problem that the separability of particles cannot be accounted for in a satisfactory principled manner. The so-called small-clause analyses run into the opposite problem of not being able to account for the morphological properties in a theoretically desirable fashion. Despite this problem of small-clause analyses, I pointed out their value in analysing particles as secondary predicates in small-clause analyses, which captures the observation that particles are predicates. More recent analyses in which particles are treated as optionally projecting words were shown to best explain the paradoxical nature of Present-Day English VPCs. Although each of the analyses accounts for some important observations, the discussion showed that none of the analyses pay attention to all the characteristics of VPCs in a principled manner.

In Chapter 3 I proposed a lexical decomposition analysis of Present-Day English VPCs in which their change-of-state semantics is directly reflected in the syntactic structure. The particle forms a constituent with a lexically decomposed verb, which together express a (resultative) change-of-state meaning. On the basis of the syntactic and morphological properties of VPCs, I argued that Present-Day English particles are optionally projecting heads. I proposed that the optionality is regulated by a Structural Economy Principle, which favours heads over phrases. Particles do not project unless there is unambiguous evidence for phrasal status.

It was shown that the ambiguous status of Present-Day English particles combined with the proposed lexical decomposition analysis account for the syntactic distribution of particles. While head status is the default by structural economy, particles may project a
phrase, for instance when they are modified (syntactic trigger). Apart from syntactic triggers for projection, such as modification, there is also a pragmatic trigger, involving focus assignment. Focus domains are argued to map onto a syntactic phrase in syntax. Thus, particles, which carry primary stress and can occur in focus position, are forced to project a phrase when they receive focus.

The structural default for particles is to be non-projecting, in which case they are syntactically dependent on the verb and form a complex syntactic head with the verb. The possibility of VPCs to be the input to word formation processes follows from the proposed analysis in which the verb and the particle combine to form a unit.

Despite the predominance of the V–Prt–Obj order in Present-Day English, the alternative V–Obj–Prt order continues to be an option. I speculate that this is the result of the inherently strong predicate status of particles, which is clear for example from first language acquisition studies. These show that children first acquire particles, expressing a literal meaning, before they combine them with lexical verbs and objects. Related to this is their change-of-state semantics, which is robustly present and which allows them to appear after the object to obtain focus (stressing the result of the event). A parallel situation is found in resultative constructions with adjectives, in which the adjective expresses the end result of the action denoted by the verb. With a few exceptions, the adjective must follow the object.

In Chapter 4 I provided an in-depth study of the Old English precursors of the Present-Day English VPC, the separable complex verbs (SCVs). On the basis of their syntactic distribution, as well as on the basis of their invariably transparent meaning and the fact that they carry primary stress, I argued that Old English particles are secondary predicates, representing syntactic phrases. I also compared the Old English particles with the Old English prefixes and showed that both SCVs and ICVs are change-of-state predicates. Whereas particles are syntactically autonomous elements, prefixes are bound morphemes and cannot be separated from the verb. I presented the results from a detailed study of the syntactic distribution of Old English particles, which pays attention to the position of the particle with respect to finite and non-finite verbs.

In Chapter 5 I proposed a formal syntactic analysis of Old English SCVs, which combines the lexical decomposition structure proposed for Present-Day English in Chapter 3 and a word order analysis involving pied piping (Biberauer and Roberts 2005). It was shown that the distribution of Old English particles follows from their phrasal status and from a set of checking operations. Old English is thought to have two grammatical options of checking EPP features, one of which is DP-movement. The other option is moving a larger XP containing a DP, VP for example, thus pied-piping the other material contained in that larger XP (Biberauer and Roberts 2005). The fact that particles are affected by these movement operations is the result of their phrasal status: they act independently of the verb, even though they form a semantic unit with the verb. Preverbal particle orders, for instance, are derived by VP pied piping, which carries the particle (inside the VP) across the verb that has already moved out of the VP. The postverbal particle orders are the result of DP-movement, which leaves the other VP-material (including the particle) in situ, hence in a position following the verb.
The well-known observation that particles are stranded by finite verb movement in Old English main clauses and to a lesser extent also in coordinate and subordinate clauses was shown to follow from the proposed phrasal status of particles. As autonomous syntactic elements they act independently of the verb, which means that they do not move along when the finite verb moves to the second position in the clause.

The analysis proposed in this chapter is essentially the first full-blown account of the syntax of Old English separable complex verbs and is an important contribution to our understanding of the structural status of Old English particles as well as of the precise syntactic distribution of Old English SCVs.

In Chapter 6 I discussed in detail the syntactic structure and syntactic distribution of early Middle English particles, focusing on the changes they underwent in the transition from Old to Middle English. It was shown that there is evidence for the phrasal status of early Middle English particles, the strongest evidence being the shift they underwent from preverbal to postverbal position.

I presented two case studies, one of which examines the role of finite verb movement in early Middle English. The case study shows that there is robust evidence for particle stranding by finite verb movement in early Middle English. An issue for further research would be to see to which extent there is still evidence for particle stranding by finite verb movement in the late Middle English period. This could shed light on the decline of finite verb movement in English.

The second case study explores the language contact factor as a possible influence on the relatively quick rise of the V–Prt(–Obj) order after the Old English period. The case study attempts to lay bare the possible effects of the language contact situation with Old Norse at the end of the Old English period by comparing the position of the particle in texts from the contact-influenced North-East of England with that in texts from the South-West of England. The data show that the immediately postverbal particle order is slightly more frequent in North-Eastern texts in early Middle English. Firm conclusions about the effect of the language contact situation on this word order pattern cannot be drawn, however, largely because of the scarcity of texts in this period.

Apart from syntactic changes, it was also shown that there are changes in the meaning of VPCs. Unlike Old English particles, Middle English particles do not invariably have a literal meaning. It was suggested that the development of more abstract meanings paves the way for the verb and the particle forming a closer unit, which entails an increase in syntactic dependence of the particle. This development represents a grammaticalization path, by which structure is lost and meaning is bleached. There is room here for further research into the semantic and syntactic development of particles and VPCs in the late Middle English period and the early Modern English period (±1500–1800). For late Middle English there is the PPCME2 corpus (Kroch and Taylor 2000b). Investigation of the early Modern English period has become considerably easier since the appearance of the Penn-Helsinki Parsed Corpus of Early Modern English (PPCEME; Kroch, Santorini and Delfs 2004), a syntactically annotated corpus of 1.8 million words whose texts, like those of PPCME2, are computer-searchable with CorpusSearch (Randall 2003).
In Chapter 7 I presented a formal syntactic analysis of early Middle English particle syntax. The analysis combines the lexical decomposition analysis proposed in Chapter 3 and 5 with the formal syntactic analysis of word order variation adopted in Chapter 5. The shift in particle position in the transition from Old to Middle English follows from the syntactic autonomy of the particle and from the loss of the VP pied piping option in early Middle English. VP pied piping is reanalysed as DP movement, as a result of which VP material other than the direct object no longer appears before the verb. This means that particles are no longer found in a position before the verb after the reanalysis has taken place. The proposed account provides insight into how the English VPC developed from the Old English SCV.

I showed that the evidence for phrasal status decreases in Middle English, which increasingly causes particles to become analysed as heads (the default by structural economy). The predominant immediately postverbal particle order, V–Prt(–Obj), is argued to reflect a structure in which the particle is a head and is forced to form a complex with the verb. The Structural Economy Principle is thought to give rise to grammaticalisation from phrase to head.

The account proposed in this thesis not only captures the syntactic and morphological characteristics of verb-particle combinations, but also incorporates their resultative change-of-state semantics. The structural analysis of late Old English, early Middle English and Present-Day English particles and the analysis of the structural development they undergo provide insight into the grammatical nature of particles in these stages of the English language. The analysis shows that elements such as particles, can be ambiguous between phrases and heads. The idea that projection of a phrase only happens when required is in line with principles of (structural) economy and is reminiscent of ideas put forward in Bare Phrase Structure theory (Chomsky 1995). This could well be applied to other syntactic elements which have undergone grammaticalisation (I have suggested that some adjectives like open, free for example are ambiguous between phrase and head) and may provide a fruitful way of analysing elements which, like particles, appear to be at the boundary of syntax and morphology. The Present-Day English particle facts suggest that the grammatical modules of syntax and morphology are not as separate as is sometimes assumed.

The syntactic development of English particles involves a process of grammaticalisation. Not only does their development involve a loss of structure, it also comprises semantic bleaching, in the sense that the semantic content of particles shifts to more abstract meanings. Despite having undergone a loss of structure and semantic bleaching, Present-Day English particles are close to their origins in that they function as secondary predicates.
Appendices

Appendix I: A list of Old English texts
Appendix II: A list of Middle English texts
Appendix I: A list of Old English texts

This appendix contains a list of the Old English texts searched. Texts are given by YCOE (Taylor et al. 2003) filename and are accompanied by the full text name and a reference to the text edition.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Text name and edition</th>
</tr>
</thead>
</table>
| coaelhom.o3 | *Ælfric's Homilies Supplemental*
| coaelive.o3 | *Ælfric's Lives of Saints*
| coapollo.o3 | *Apollonius of Tyre*
| cobenrul.o3 | *Benedictine Rule*
| cobyrhf.o3 | *Byrhtferth's Manual*
| cocathom1.o3 | *Ælfric's Catholic Homilies I*
| cocathom2.o3 | *Ælfric's Catholic Homilies II*
| cochrontC | *Anglo-Saxon Chronicle C*
| codocu3.o3 | *Charters and Wills*
coepigen.o3 Ælfric's Epilogue to Genesis

copherbar Herbarium

colaw1cn.o3 Laws of Cnut

colaw2cn.o3 Laws of Cnut

colaw5atr.o3 Laws of Æthelred V

colaw6atr.o3 Laws of Æthelred VI

colawnorthu.o3 Northumbra Prosta Lagu

colsigef.o3 Ælfric's Letter to Sigefyrth

colwgeat Ælfric's Letter to Wulfgeat
Ælfric's Letter to Wulfstan

Ælfric's First Letter to Wulfstan

Ælfric's Second Letter to Wulfstan

Martyrology

The Gospel of Nicodemus

The Old English Version of the Heptateuch

Ælfric's Preface to Catholic Homilies I

Ælfric's Preface to Catholic Homilies II
coprefgen.o3 Ælfric’s Preface to Genesis

copreflives.o3 Ælfric’s Preface to Lives of Saints

cosolsat2 Solomon and Saturn II

cotempo.o3 De Temporibus Anni

coverhom Vercelli Homilies

cowsgosp.o3 West-Saxon Gospels
Appendix II: A list of Middle English texts

This appendix contains a list of the Middle English English texts searched. Texts are given by PPCME2 (Kroch and Taylor 2000) filename and are accompanied by the full text name and a reference to the text edition. The two versions of the Cursor Mundi are not included in the PPCME2 corpus and are listed separately below.

CM(A)
Cursor Mundi, Arundel manuscript

CM(C)
Cursor Mundi, Cotton manuscript

File name
Text name and edition

`cmancriw.m1`
Ancrene Riwle

`cmkentho.m1`
Kentish Homilies

`cmlamb1.m1`
The Lambeth Homilies

`cmpeterb.m1`
The Peterborough Chronicle
APPENDIX II

The Ormulum

Vices and Virtues

Hali Meidhad

St. Juliana

St. Katherine

St. Margaret

Sawles Warde

The Lambeth Homilies

Trinity Homilies
cmayenbi.m2 Ayenbite of Inwyt

cmearlps.m2 The Earliest Complete English Prose Psalter

cmkentse.m2 Kentish Sermons

cmastro.m3 A Treatise on the Astrolabe

cbenrul.m3 The Northern Prose Rule of St. Benet

cboeth.m3 Boethius

cbrut3.m3 The Brut or The Chronicles of England

ccloud.m3 The Cloud of Unknowing

cctmeli.m3 The Tale of Melibee

cctpars.m3 The Parson's Tale
cmedvern.m3 The Mirror of St. Edmund (Vernon Ms.)

cmequato.m3 The Equatorie of the Planets
Price, Derek J. 1955. The equatorie of the planetis. Cambridge: Cambridge
University Press.

cmhorses.m3 A Late Middle English Treatise on Horses
Svinhufvud, Anne Charlotte. 1978. A Late Middle English treatise on horses.

cmandev.m3 Mandeville’s Travels
Hamelius, Paul. 1919–1923 (for 1916). Mandeville’s travels, translated from the
Trench, Trübner & Co.

cmntest.m3 The New Testament (Wycliffite)
Forshall, Josiah and Frederic Madden. 1879. The New Testament in English
according to the version of John Wycliffe about A.D. 1380 and revised by John

cmtest.m3 The Old Testament (Wycliffite)
Forshall, Josiah and Frederic Madden. 1850. The Holy Bible, containing the
Old and New Testaments, with the apocryphal books, in the earliest English versions
made from the Latin Vulgate by John Wycliffe and his followers. Vol. 1. Oxford:

cmpolyeh.m3 John of Trevisa’s Polychronicon
Lumby, Joseph R. 1876, 1882. Polychronicon Ranulphi Higden, monachi
cestrensis, Vols. VI, VII, VIII, English translations of John Trevisa and of an unknown
writer of the fifteenth century. Rolls Series 41. London: [publisher unknown].

cmpurvey.m3 Purvey’s General Prologue to the Bible
Forshall, Josiah and Frederic Madden. 1850. The Holy Bible, containing the
Old and New Testaments, with the apocryphal books, in the earliest English versions
made from the Latin Vulgate by John Wycliffe and his followers. Vol. 1. Oxford:

cmwycser.m3 English Wycliffite Sermons
References

REFERENCES

Longman.
Cappelle, B. 2002. ‘And up it rises. Particle preposing in English’. In N. Dehé et al. (Eds.), *Verb-Particle Explorations* (= Interface Explorations 1), 43–66. Berlin/New York: Mouton de Gruyter.
Dehé, N., R. Jackendoff, A. McIntyre and S. Urban (Eds.) 2002. *Verb-Particle Explorations*
REFERENCES

(= Interface Explorations 1). Berlin/New York: Mouton de Gruyter.

REFERENCES

Ishikawa, K. 1999. ‘English Verb-Particle Constructions and a V*-internal structure’. *English
REFERENCES

— 2002. 'English particle constructions, the lexicon, and the autonomy of syntax'. In N. Dehé et al. (Eds.), Verb-Particle Explorations (= Interface Explorations 1), 67–94. Berlin/New York: Mouton de Gruyter.

— 1997a. 'V2 and embedded topicalization in Old and Middle English'. In A. van Kemenade and N. Vincent (Eds.) Parameters of Morphosyntactic Change, 326–352. Cambridge: Cambridge University Press.
— 1997b. 'Negative-initial sentences in Old and Middle English'. In A Festschrift for Roger Lass on his Sixtieth Birthday. Studia Anglica Posnaniensia XXXI, 91–104.

Kroch, A. 1989. 'Reflexes of grammar in patterns of language change'. Language Variation and Change 1, 199–244.

Linguistics 16, 329–352.
REFERENCES

McIntyre, A. 2002. ‘The verb get and the syntactic semantics of VP’. Ms., University of
REFERENCES

— 2002. ‘Particle placement’. In N. Dehé et al. (Eds.), Verb-Particle Explorations (= Interface Explorations 1), 141–164. Berlin/New York: Mouton de Gruyter.

Richards, M. & T. Biberauer 2004b. ‘Optionality, loss of inflection and the rise of
expletives: why Faroese is a VO Afrikaans’. Paper presented at the Workshop on Faroese, University of Iceland, June.

Talmy, L. 1978. ‘Figure and ground in complex sentences’. In J. Greenberg, C. Ferguson, and M. Moravcsik (Eds.), Universals of human language 4, 625–649. Stanford, CA: Stanford University Press.
REFERENCES 329

— 2002. ‘Particle verbs are heads and phrases’. In N. Dehé et al. (Eds.), Verb-Particle Explorations (= Interface Explorations 1), 233–267. Berlin/New York: Mouton de Gruyter.

Samenvatting (Summary in Dutch)

I. De synchronie van Engelse partikels

1. Werkwoord-partikelcombinaties in het Hedendaags Engels

In dit proefschrift wordt de historische ontwikkeling van Engelse werkwoord-partikelcombinaties in detail beschreven en geanalyseerd. De werkwoord-partikelcombinatie is een veel voorkomende constructie in het Hedendaags Engels en is opgebouwd uit een werkwoord en een partikel, (1).

(1) clean up 'schoonmaken', scare off 'afschrikken', slim down 'afslanken', figure out 'uitzoeken', rub in 'inwrijven', give back 'teruggeven'

De Hedendaags Engelse data die in dit proefschrift worden besproken en geanalyseerd zijn welbekend uit de zeer omvangrijke literatuur over Hedendaags Engelse werkwoord-partikelcombinaties. Eén van de meest frappante syntactische eigenschappen van werkwoord-partikelcombinaties is de woordvolgordealternantie, (2).

(2) a. The runner picked up the wallet.
 de hardloper raapte op de portemonnee
 'De hardloper raapte de portemonnee op.'

b. The runner picked the wallet up.
 de hardloper raapte de portemonnee op
 'De hardloper raapte de portemonnee op.'

Bij transitieve werkwoord-partikelcombinaties kan het partikel of direct op het werkwoord volgen en het object voorafgaan, (2a), of het kan van het werkwoord worden gescheiden door het object, (2b). Deze scheidbaarheid is één van de eigenschappen waarin partikels zich onderscheiden van preposities (vergelijk (2) met de voorbeelden A bee flew up his nose/*A bee flew his nose up 'Een bij vloog zijn neus in’, waar up ‘op, omhoog’ een prepositie is).

De scheidbaarheid van Engelse partikels, (2), contrasteert scherp met de eenheid van werkwoord-partikelcombinaties, zoals die blijkt uit hun woordvormingsmogelijkheden, (3).

(3) a. a good turnout 'een goede opkomst'

b. a cool-downer 'een afkoeler', a pop-uppable window 'een pop-upbaar scherm', a messed-up mind 'een verrotte geest'

c. the breaking off of negotiations 'het afbreken van de onderhandelingen'

Werkwoord-partikelcombinaties nemen deel in verschillende typen woordvormingsprocessen, zoals nulderivatie (3a), affixatie (3b), en nominalisatie (3c). Het
feit dat werkwoord-partikelcombinaties de input kunnen zijn voor woordvorming duidt erop dat werkwoord en partikel een eenheid vormen.

De semantiek van Hedendaags Engelse werkwoord-partikelcombinaties kent betekenissen die variëren op een schaal van volledig transparant (d.w.z. letterlijk) tot volledig idiomatisch, zoals de voorbeelden in (4) fraai illustreren.

Deze voorbeelden laten zien dat één en dezelfde werkwoord-partikelcombinatie een transparante betekenis, (4a), alsmede een idiomatische betekenis kan hebben, (4b). In het eerste geval kan de betekenis van de werkwoord-partikelcombinatie afgeleid worden door de individuele betekenissen van het werkwoord en het partikel samen te voegen. Bij idiomatische werkwoord-partikelcombinaties kan de betekenis van het geheel niet op deze manier worden afgeleid. Het overgrote deel van Hedendaags Engelse werkwoord-partikelcombinaties heeft een resultatieve betekenis, die wordt toegekend door het partikel. Zo is het resultaat van de handeling (took ‘nam’) in (4a) dat de honkbalknuppel tevoorschijn is gekomen. Bij transparante werkwoord-partikelcombinaties is de resultativiteit duidelijk aan te tonen door het object en het partikel aaneen te schakelen met behulp van het werkwoord bezijn: a baseball bat is out ‘een honkbalknuppel is tevoorschijn (gehaald)’.

De paradoxale eigenschappen (scheidbaarheid en eenheid) van de Hedendaags Engelse werkwoord-partikelcombinatie bemoeilijken het formuleren van een theoretische analyse die hun gedrag kan verklaren. De vele bestaande analyses van Hedendaags Engelse werkwoord-partikelcombinaties worden in dit proefschrift onder de loep genomen, waarna een nieuwe analyse wordt voorgesteld. Traditioneel vallen de analyses in twee verschillende typen uiteen: syntactische analyses (waaronder de zogenaamde small clause analyses), waarin het partikel wordt voorgesteld als een syntactische frase (6), en morfologische analyses, waarin het partikel samen met het werkwoord een (morfologisch) hoofd vormt (7).

\[
(6) \quad [v \ [np \ [p]]]
\]

\[
(7) \quad [v \ [v] \ [p]]
\]

In de syntactische benadering (6) staat de onafhankelijkheid van het partikel centraal, die als bewijs dient voor de claim dat partikels (en dus werkwoord-partikelcombinaties) frases zijn. Verdere evidentie is afkomstig van de modificatiemogelijkheden van partikels, (8).
(8) a. The runner picked the apple right up.
 *De hardloper raapte de appel meteen op.'
 b. The runner picked right up the apple.

De mogelijkheid tot modificatie door adverbia als *right* 'meteen, snel' (8a) impliceert dat partikels een syntactische frase zijn, waarin ruimte is voor modificieerders. Het voorbeeld in (8b) laat echter zien dat zulke modificatie niet mogelijk is wanneer het partikel direct volgt op het werkwoord en zelf gevolgd wordt door een object.

Een probleem voor deze benadering, waarin het partikel acteert als een autonoom syntactisch element, is de eenheid van werkwoord-partikelcombinaties, zoals die blijkt uit woordvormingsmogelijkheden (5).

In de morfologische benadering (7) ligt de nadruk juist op de eenheid van de werkwoord-partikelcombinatie en het werkwoord en het partikel vormen samen een complex hoofd. Probleem voor deze analyses is dat de scheidelbaarheid van partikels niet verklaard kan worden op een theoretisch aanvaardbare wijze. Het principe van Lexicale Integriteit stelt dat syntactische operaties niet kunnen plaatsvinden op delen van een morfologisch woord. Het is volgens dit principe dus uitgesloten dat het partikel verplaatst wordt uit het werkwoord-partikelcomplex.

De bespreking van de bestaande literatuur laat zien dat geen van de analyses alle eigenschappen van Hedendaags Engelse werkwoord-partikelcombinaties kan verklaren en dat aan sommige analyses bovendien theoretische nadelen verbonden zijn. Dit proefschrift biedt daarom een alternatieve analyse zonder deze tekortkomingen.

1.2 Hedendaags Engelse partikels zijn hybride tussen hoofd en frase

In de analyse die in dit proefschrift wordt voorgesteld zijn partikels hybride tussen hoofd en frase. Dit idee komt ook elders in de literatuur voor, maar in de hier gepresenteerde analyse worden de data verklaard met behulp van lexicale decompositie. De lexicale betekenis van het werkwoord van de werkwoord-partikelcombinatie is opgebouwd uit drie elementen: een abstract adjectief, een BECOME operator, en een CAUSE operator, (9).

(9) a. She broke off a piece of chocolate.
 *Ze brak af een stuk van chocolade
 b. [she CAUSE [a piece of chocolate BE [BROKEN of]]]
 c. [she CAUSE [a piece of chocolate BE [BROKEN of]]]

De lexicale decompositie in (9) representeert de resultatieve betekenis van (transitieve) werkwoord-partikelcombinaties en is direct terug te vinden in hun syntactische structuur, (10).

(10) [she CAUSE [a piece of chocolate BE [BROKEN of]]]
Het lexicale werkwoord komt tot stand door middel van hoofdverplaatsing (conflatie) van het abstracte adjiektief naar V (met de BE operator) en tot slot naar v (met de CAUSE operator). Zowel de scheidbaarheid als de eenheid van werkwoord-partikelcombinaties volgt uit de hybride status van partikels. Wanneer het partikel een frase projecteert, acteert het als een syntactisch autonoom element en zal het gescheiden worden van het (transitieve) werkwoord wanneer deze hoofdverplaatsing ondergaat, (11a). Wanneer het partikel niet projecteert is het een syntactisch afhankelijk hoofd dat moet samengaan met een ander syntactisch element, namelijk het abstracte adjiektief (het lexicaal gedeconexeerde werkwoord), (11b).

De projectie van het partikel wordt gereguleerd door het Structurale Economie Principe (Structural Economy Principle), dat stelt dat hoofden geprefereerd worden boven frasen, (12).

De inzichten over Hedendaags Engelse werkwoord-partikelcombinaties die deel uitmaken van de hier voorgestelde analyse zijn afkomstig uit de literatuur. In tegenstelling tot de vele bestaande analyses verklaart deze analyse de syntactische, morfologische en semantische gedragingen van werkwoord-partikelcombinaties op een theoretisch principiële manier.
2.1 Partikels in het (laat-)Oudengels

De Hedendaags Engelse werkwoord-partikelcombinatie gaat terug op de Oudengelse scheidbaar samengestelde werkwoorden (separable complex verbs of SCV’s), die zijn opgebouwd uit een scheidbaar prefix (partikel) en een werkwoord. De Oudengelse partikels verschillen op een aantal punten van hun opvolgers in het Hedendaags Engels. Het meest opvallende verschil betreft de basispositie van het partikel. Het Oudengels is een OV-taal, wat betekent dat de basispositie van het niet-werkwoordelijke deel van de VP – waaronder partikels – preverbaal is, (13).

(13) & þæt geswell of animð en de zwelling weg neemt

‘en neemt de zwelling weg’ (Pseudo-Apuleius, Herbarium (coherbar), 5.6.360)

In het voorbeeld in (13) gaan het object þæt geswell ‘de zwelling’ en het partikel of ‘weg’ aan het werkwoord animð ‘neemt’ vooraf.

Oudengelse partikels zijn scheidbaar van het werkwoord door diverse elementen. Zo kunnen partikels in preverbale positie gescheiden worden van het werkwoord door de infinitiefmarkeerder to ‘te’, door modale werkwoorden, door de negatiefmarkeerder ne ‘niet’ en door gestrande preposities. Verder kan een partikel los komen te staan van het werkwoord door V2, waarbij het werkwoord verplaatst naar de tweede positie in de zin, het partikel achterlatend. Mede op basis van deze plaatsingsmogelijkheden, die de syntactische autonomie van Oudengelse partikels duidelijk maakt, wordt in dit proefschrift beargumenteerd dat de structuur van Oudengelse partikels die van een frase is, zoals ook op een aantal andere plaatsen in de literatuur is voorgesteld. Bovendien wordt in navolging van enkele bestaande benaderingen aangenomen dat Oudengelse partikels fungeren als secundaire predikaten met een resultatieve semantiek. Hierin zijn ze hetzelfde als Hedendaags Engelse partikels, die ook veelal een resultatieve betekenis hebben. In tegenstelling tot Hedendaags Engelse partikels hebben Oudengelse partikels bijna zonder uitzondering een transparante betekenis hebben.

Behalve deze SCV’s kent het Oudengels ook onseheidbaar samengestelde werkwoorden (inseparable complex verbs of ICV’s), die bestaan uit een (onscheidbaar) prefix en een werkwoord. Hoewel de nadruk van dit proefschrift op de ontwikkeling van de SCV’s (de voorgangers van de Hedendaags Engelse werkwoord-partikelcombinaties) ligt, wordt er een uitgebreide beschrijving van Oudengelse ICV’s gegeven ter vergelijking met de SCV’s. De onseheidbare ICV’s worden geanalyseerd als morfologische woorden. Net als partikels in de SCV’s fungeren prefixen in de ICV’s als resultatief secundair predikaat. Deze overlap is een van de redenen voor het verval van de ICV’s, dat reeds aan de gang was in de Oudengelse periode en dat uiteindelijk resulteerde in het verdwijnen van de ICV’s in de Middelengelse periode.
2.2 Een formele analyse van de plaatsingsmogelijkheden van Oudengelse partikels

De in dit proefschrift voorgestelde analyse van de woordvolgordevariatie van Oudengelse partikels is net als die voor het Hedendaags Engels een lexicale decompositie analyse. Een belangrijk verschil met het Hedendaags Engels is dat Oudengelse partikels altijd een syntactische frase projecteren, (15), gebruikmakend van voorbeeld (13).

(15) \[v [CAUSE] [v \text{ pat geswell} [v \text{ BE}] [v [\text{ ANIMD} [v [\text{ of}]]]]]

De frasele status van Oudengelse partikels reflekteert hun volledige syntactische autonomie en verklaart hun scheidelbaarheid van het werkwoord.

De analyse maakt voor de woordvolgordevariatie verder gebruik van een elders in de literatuur voorgestelde analyse, die op zichzelf echter weinig aandacht schenkt aan partikels. Deze bestaande analyse is geplaatst in het minimalistische kader en stelt voor dat de woordvolgordevariatie in het Oudengels (en het Middelengels) het gevolg is van een beperkt aantal checkingopties in de Oudengelse grammatica. De hoofden \(v \) en \(T \) bevatten elk een EPP-feature dat vraagt om een constituent met een nominaal D-feature in de specifier. De EPP-features kunnen in het Oudengels gecheckt worden door de verplaatsing van een DP of door de verplaatsing van een groter constituent die een DP bevat. DP_{obj}-verplaatsing levert een woordvolgorde op waarin het partikel postverbaal staat, terwijl VP-verplaatsing een preverbaal partikel oplevert. Bij die laatstgenoemde optie komt de gehele VP, inclusief het partikel, vóór het werkwoord in \(v \) te staan, (16).

(16) a. Donne Moyses his handa up ahof, …
 toen Mozes zijn handen op hief
 (Heptateuch: Exodus (cootest), 17.11.3063)

b. \[v [\text{ Meyer} [CAUSE] [v \text{ bis handa} [v \text{ BE}]] [AP [v \text{ AHOF} [v [\text{ of}]]]]]
 \[\text{ MOVE AHOF}\]
\[v [\text{ Meyer} [v \text{ bis handa} t\text{+V(BE)}] [AP t\text{+V(BE)} [v [\text{ of}]]]]\]
 \[\text{ MOVE VP}\]
\[v [\text{ Meyer} [v \text{ bis handa} t\text{+V(BE)}] [AP t\text{+V(BE)} [v [\text{ of}]]]]\]
\[\text{ MOVE AHOF}\]

De analyse maakt de plaatsingsmogelijkheden van Oudengelse partikels inzichtelijk.

2.3 De opkomst van de werkwoord-partikelcombinatie in het (vroeg-)Middelengels

De vroeg-Middelengelse data laten een drastische verandering in de positie van partikels zien. De positie van partikels is niet langer overwegend preverbaal zoals in het Oudengels het geval was, maar in plaats daarvan overwegend postverbaal (17).
Deze verandering wordt in de literatuur geheel terecht in verband gebracht met het verlies van OV woordvolgorde, dat al in de Oudengelse periode gaande was. De relatieve snelheid waarmee de partikels van positie zijn veranderd duidt er echter op dat er meer factoren een rol moeten hebben gespeeld in deze omslag. Een mogelijke factor die in dit proefschrift wordt onderzocht is de invloed van de taalcontactsituation met het Oudnoors aan het einde van de Oudengelse periode in het noordoostelijke deel van Engeland. Het is bekend dat het Oudnoors, een OV-taal, net zoals het Engels partikels bezat, vele waarvan een sterke vormelijke gelijkenis toonden met de Engelse (bijvoorbeeld het Oudengelse *ut* en het Oudnoorse *út*).

De invloed van het Oudnoors op de positie van het partikel wordt bestudeerd in een casus die de positie van het partikel in vroeg-Middelengelse noordoostelijke teksten (uit het Vikinggebied, oftewel de *Danelaw*) vergelijkt met de positie van het partikel in vroeg-Middelengelse zuidwestelijke teksten (buiten de *Danelaw*). De resultaten van de studie laten een verschil zien in partikelpositie tussen deze twee groepen teksten. In de noordoostelijke teksten komen meer postverbale partikels voor dan in de zuidwestelijke teksten, wat invloed van het Oudnoors suggereert. Door het geringe aantal teksten is het onmogelijk harde conclusies te verbinden aan het resultaat, maar het lijkt op zijn minst waarschijnlijk dat de taalcontactsituation met het Oudnoors van invloed is geweest. Gesuggereerd wordt dat de taalcontactsituation met het Oudnoors versnellend heeft gewerkt op de verandering naar postverbale partikels.

De vroeg-Middelengelse data die in dit proefschrift worden gepresenteerd en geanalyseerd laten zien dat partikels in deze periode net als Oudengelse partikels een frase projecteren. Het feit dat partikels van positie veranderden is overtuigende evidentie voor hun syntactische autonomie in dit stadium. Andere evidentie betreft het feit dat partikels in het vroeg-Middelengels gestrand kunnen worden door werkwoordplaatsing, zoals blijkt uit de resultaten van een tweede casus. Tegelijkertijd laten de data zien dat er minder evidentie voor frasele status is dan in het Oudengels het geval was. Middelengelse partikels worden vaker als hoofd geanalyseerd, zoals ingegeven door het Structurele Economie Principe, en vormen dan een eenheid met het werkwoord.
De structuur in (18) is in essentie dezelfde als die voor het Oudengels en die voor het Hedendaags Engels. In het Oudengels representeren partikels echter overwegend een frase (PrtP), terwijl partikels in het Middelengels steeds vaker als hoofd geanalyseerd worden en een eenheid met het werkwoord vormen. Dit is het gevolg van afnemende evidentie voor de syntactische autonomie (en dus voor frasele status) van partikels. Deze doorgaande ontwikkeling heeft uiteindelijk geleid tot partikels die hybride zijn tussen hoofd en frase in het Hedendaags Engels.

Wanneer het partikel als hoofd wordt geanalyseerd vormt het een syntactisch hoofd met het werkwoord. Verplaatsing van het werkwoord (lexicale compositie en eventueel V2) is inclusief het partikel (19).

(19)
\[p Ha \[CAUSE] [vP his beamed [v BE] [AP [A Prt] HACKEDE of]] \]
\[\rightarrow MOVE [A Prt] \]

De verscheidene woordvolgordes van Middelengelse werkwoord-partikelcombinaties worden verklaard met behulp van de woordvolgordeanalyse die werd aangenomen voor het Oudengels. De kern van deze analyse voor het Middelengels houdt in dat sommige van de Oudengelse checkingopties geen stand houden in de Middelengelse grammatica. Zo verdwijnt de VP-verplaatsingsoptie (voor het *checken* van *v's EPP feature*) in het vroeg-Middelengels waardoor partikels niet langer preverbal komen te staan in de oppervlaktestructuur. Checking van *v's EPP feature* gebeurt enkel nog door verplaatsing van het DP object, de enige overgebleven optie in het Middelengels (20).

(20)
\[p Ha [A Prt]+V(BE)+[CAUSE] backede of [vP his beamed t[A Prt]+V(BE) [AP [A Prt]]] \]
\[\rightarrow MOVE DP backede \]
\[\rightarrow MERGE T en VERPLAATS p \]

De verplaatsing van de DP *ha 'ze (pl.)' wordt *getriggerd* door het *EPP-feature* van T. In het Oudengels was er naast de DP-verplaatsingsoptie nog een andere optie om T's *EPP-feature* te checken: *pP-verplaatsing*. Deze optie verdwijnt in de laat-Middelengelse periode.

De verandering naar postverbale partikels wordt in dit proefschrift dus verklaard door de syntactisch autonome status van partikels in de betreffende periode en door het verlies van een grammaticale optie in het vroeg-Middelengels. Ook wordt aangetoond dat er vanaf het vroeg-Middelengels minder evidentie is voor de syntactische autonomie van partikels,
een doorgaande ontwikkeling die heeft geleid tot de situatie in het Hedendaags Engels, waarin partikels hybride zijn tussen hoofd en frase.
Curriculum Vitae

Marion Elenbaas was born in Middelburg on 11 July 1978. After secondary school (Athenaeum), she moved to Leiden to do a degree in English language and literature. In the third year of her studies (1998–1999), she was a Harting Scholar at the University of York, UK. Back in Leiden, she specialised in English linguistics and in her fifth year she held a teaching and research assistant position in the Department of English Language and Culture. After obtaining her masters degree (cum laude) in 2001, she went on to become an OoO (junior researcher) at the Radboud University Nijmegen (October 2001–January 2006). She is currently working as a temporary lecturer in the Department of Linguistics and English Language at the University of Manchester, UK (January–December 2006). In January 2007 she will take up a position as lecturer in English linguistics in the Department of English Language and Culture at the University of Leiden.